
CO/ " tw 7 f59Ms* copy !7 afsgoples

00
00
€(D IDA PAPER P-1925

N

PROCEEDINGS OF THE CAIS/CIG/SEI WORKSHOP

• J<

* DTIC
SLECTEI Clyde Roby

APR 1 2 1989

D

January 1986

Prepared for
Ada Joint Program Office

* ~DISTRBItMON SAPTE--~.&
Approved tot public teleas%

[tmnuton LIn~it !

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311-1772

On -' IDA LMg No. NO U-3U52

LI

I

DEFINITIONS
IDA publishes the following documents to report the results of its work.

Reports
Reports are the most authoritative and most carelulty considered products IDA publishes.
They normally embody results of major proiects which (a) have a direct bearing on decisions
affecting major programs, or th) address issues of significant concern to toe Executive
Branch, tt. Congress and/or the puhlic, or (c) address issues that have significant economic
implications. IDA Reports are reviewed by outside panels of experts to ensure their high
quality and relevance to the problems studied, and they are released by ie President of IDA.

Papers
Papers normally address relatively restricted technical or policy issues. They communicate
the results of special analyses, interim reports or phases of a task, ad hoc or quick reaction
work. Papers are reviewed to ensure that they meet standards similar to those expected of
refereed papers in professional journals.

Documents
IDA Documents are used for the convenience of the sponsors or the analysts to record
substantive work done in quick reaction studies and major interactive technical support
activities- to make available preliminary and tentative results of analyses or of w~rking
group and panel activities; to forward intormation that is essentiaty unanalyzed and uneval-
uated; or to make a record of conferences, meetings, or oriefings, or of data developed in
the course of an investigation. Review of Documents is suited to their content and intended
use.

The results of IDA work are also conveyed by briefings and informal memoranda to sponsors
and others designated by the sponsors, when appropriate.

The work reported in this document was conducted under contract MDA 903 84 C 0031 for 1
the Department of Defense. The publication of this IDA document does not indicate endorse-
ment by the Department of Defense, nor should the contents be construed as reflecting the
official position of that agency.IThis perhas been reviewed by IDA to assure that It meets high standards of thoroughness.

objectivIty, and sound analytical methodology and that the conclusions stem from the
methodology.

Approved for public release; distribution unlimited. Unclassified.
FI

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILTY OF REPORT

Public release, unlimited distribution: 23
2b DECLASSJFICATION/DOWNGRADING SCHEDULE December 1988

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

IDA Paper P-1925

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Institute for Defense Analyses IDA OUSDA, DIMO

6e ADDRESS (City, State, and Zip Code) 7b ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St. 1801 N. Beauregard St.
Alexandria, VA 22311 Alexandria, VA 22311

8a NAME OF FUNDINGISPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Ada Joint Program Office AJPO MDA 903 84 C 0031

Sc ADDRESS (City, State, and Zip Code) 10 SOURCE OF FUNDING NUMBERS

1211 Fern Street, Room C-107 PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22202 ELEMENT NO. NO. NO. ACCESSION NO.
A tT-D5-305

11 TITLE (Include Security Classification)

Proceedings of the CAIS/CIG/SEI Workshop (U)
12 PERSONAL AUTHOR(S)

Clyde Roby
13a TYPE OF REPORT 1b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) I PAGE COUNT

Final FROM TO 1986 January 95

16 SUPPLEMENTARY NOTATION

17 COSAT1 CODES 18 SUBJECT TERMS (Continue on reverse i necessary and identify by block number)
FIELD GROUP SUBGROUP Ada; CAIS; APSE; Programming Support Environments; CAISWG;

CAIS security requirements; Input/Output packages; CA.IS and the
Space Station; MIL-STD-CAIS.

19 ABSTRACT (Continue on reverse I necessary and Identify by block number)

The purpose of this IDA Paper is to document the general areas of discussion on CAIS Security
requirements, the CAIS and other environment development efforts (including PCTE, the WIS Operating
System, UNIX, etc.), Input/Output packages in the CAIS, the CAIS package LISTUTILITIES,
Distributed CAIS, CAIS and the Space Station, and a list of issues brought forth by the implementors.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSMCATION

(M UNCLASSIFIED/UNLIMITED [3 SAME AS RPT. [3 DyIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include area code) 22c OFFICE SYMBOL

Mr. Clyde Roby (703) 824-5536 IDA/CSED

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

AU other editions are obsolete UNCLASSIFIED

IDA PAPER P-1925

PROCEEDINGS OF THE CAIS/CIG/SET WORKSHOP

Clyde Roby

January 1986AC ;o Fr
NTIS CMA&I,
OTIC TAB
Unannounced 1
Justification

By

D titonAvaelability codes

Avail and/or
Dist Special

I DA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-5-305

TABLE OF CONTENTS I

Table of Contents

1.0 Introduction 1
1.1 Background 1I

1.1.1 History of the CAIS 1
1.1.2 Purpose of the CAIS 2
1.13 CAIS Implementation efforts 2

1.2 Goals of the Workshop 4
1.3 Participants 4
1.4 Format of the Workshop 5

2.0 Status of CAIS-Related Activities 7
3.0 Security Issues 9

4.0 General Package Structure 13

4.1 Exceptions 14
* 4.2 Interaction among CAIS Input/Output Packages 16

4.3 Processes 17

5.0 CATS Iterators 19

6.0 WIS Operating System (WOS) and the CAIS 23

6.1 Introduction to the WIS Operating System 23
* 6.2 Overview of the WIS Operating System (WOS) 26

6.3 General Discussion 27
6.4 Timestamps and TIME attributes 29
6.5 Scheduling for Distributed Systems 30
6.6 Distribution and the Space Station 30

* 7.0 IMPORT/EXPORT and the CAIS 33

8.0 L rUITES 35

9.0 Exceptions in UST_UTI.JTIES 37

10.0 Alternate Interfaces in the CAIS 39

11.0 CAIS and the PCTE 41
* 11.1 Overview of the PCTE 41

11.2 Discussion on the PCTE 41
11.3 PCTE 42
114 Further Questions on the PCTE 43

12.0 CAIS Usability and Implementability 45

* 12.1 CAIS Documents 45
12.2 CAIS Conformance Testing 45
12.3 Access Control 47

13.0 Tools in the CAIS 49

14.0 Performance in the CAIS 53

14.1 Historical performance of the ALS 53
14.2 Perceived Response Time 53
14.3 Prototype CAIS Implementations 54
144 Perceived Performance 55

0

II CAISWG/CIG/SEI PROCEEDINGS

15.0 User Interfaces and -General CAIS Input/Output 57
16.0 Recommendations 59
Appendix A. LIST OF PARTICIPANTS 61
Appendix B. GOALS 65
Appendix C. AGENDA 67
Appendix D. ISSUES 69

D.1 General Issues 69
D.2 WIS Distributed OS Issues 69
D.3 CAIS and the Space Station 70

Appendix E. MITREs LISTUTILITIES Package 73

INTRODUCTION 1

40

1.0 Introduction

1.1 Background

1.1.1 History of the CAIS

The Ada1 language was adopted as a standard by the American National Standards Institute

in early 1983. [1]

In parallel with the latter stages of the design of the Ada language, an effort was begun to

identify "the relationships of the parts of an integrated Ada Program Support Environment

(APSE)." [11] This effort resulted in the "Stoneman" document which is formulated as a

requirements specification for an APSE.

"In December 1980 the Under Secretary of Defense for Research and Engineering [OUSRDE

* established the Ada Joint program Office (AJPO) to manage DoD efforts for the introduction,

implementation, and life cycle support of Ada. . .. In order to coordinate APSE developments,

the AJPO obtained a Memorandum of Agreement (MOA) with the three services at the

Assistant Secretary leveL The tri-service agreement focused on the need to develop a means

by which tools and databases can be readily transported acro service-specific APSE

implementations. The concept of the KAPSE, as articulated in the APSE STONEMAN

document, is the focal point for tri-service commonality." [7]

In January 1982, an evaluation team called the KAPSE Interface Team (KIT) met for the

first time with the long term objective of defining "requirements for interoperability and

transportability among KAPSE's, followed by guidelines and conventions for achieving them.

... [These] will evolve into standards which, when followed, will ensure the ability of

APSEs to share tools and data bases. ... [The KIT was supplemented] with a team of

representatives from industry and academia [called the KAPSE Interface team from Industry

and Academia (KITIA)] . . . to provide the KIT with a broad base of inputs, reviews, and

advice from the technically qualified talent in industry and academia." [7] Prior to the

creation of the KIT/KITIA there were two service-specific APSE implementations under

construction: the Ada Language System (ALS) for the Army and the Ada Integrated

1Ada is a registered trademark for the U. S. Government, Ada Joint Program Office.

2 CAISWG/CIG/SEI PROCEEDINGS

Environment (AE) for the Air Force. The capabilities provided by the ALS and the AlE

were derived from STONEMAN, but the KAPSE interfaces (primitive operations and abstract

data types not defined in the Ada language, but necessary for the execution of APSE tools)

differed significantly. Thus, software tools using the KAPSE interfaces of one APSE could

not be transported to the ocher APSE without changing the calls to the KAPSE interfaces.

Additionally, the differences between the capabilities provided by the KAPSE interfaces of the

two APSEs potentially made transporting a software tool difficult.

A good history of the background on this effort was generated by Tim Harrison of Texas

Instruments and appears in [41

The proposed "Military Standard Common APSE Interface Set (CAIS)" [21 was delivered to

the AJPO on 31 January 1985. The proposed MIL-STD-CAIS is currently being reviewed by

the services for adoption as a DoD standard.

1.1.2 Purpose of the CAIS

The successful Ada standardization effort has resulted in a language definition which will

serve to increase the host and target transportability of software written in the Ada language.

Many computer programs, however, have complex interactions with their environment

including the host operating system, run-time libraries, other programs, external data, terminals,

and users. The Ada language definition does not extend beyond the execution of an

individual program.

To support the transportability of Ada programs across environments, the CAIS was

developed to define a standard for interfaces between Ada programs and their programming

support environments. The CAIS defines a set of interfaces for Ada programs which, if

uniformly employed, will enhance the transportability of tools for software development and

management. These interfaces are specified in the Ada language with accompanying English

description of semantics.

1.1. CAIS Implementation efforts

In the past, there have been several CAIS prototyping efforts:

a. TRW was funded by the government to do a partial implementation for the study
of the CAIS interfaces; this work included some tool rehosting. The host for this
effort was UNIX/ARCTURUS on a VAX.

INTROOUCT ION 3

b. Gould has been doing a full implementation (including tools and rehosts) on their
MPX and UTX operating systems on an SEL system. This internal effort will be
described more thoroughly in these proceedings.

c. MITRE (funded internally) is doing a partial implementation (including tools) on
ULTRIX on the VAX. More about this effort is described in these proceedings, too.

d. Intermetrics (funded by the government) had been working on a partial
implementation for compiler support hosted on UTS on an IBM 4341. The current
status of this project is not known.

e. An Operational Definition of the CAIS is being funded by the Ada Joint Program
Office to Dr. Timothy Lindquist. This was initially started at Virginia Polytechnic
Institute and is currently being continued at Arizona State University. The full
CAIS operational definition will be completed in early 1987.

f. The government is funding a VHSIC Hardware Description Language (VHDL) effort
which is a partial implementation for database support; this was in implementation
stage in mid-1985.

g. Texas Instruments completed a partial implementation to support their APSE
Interactive Monitor (AIM) tool. This was hosted on the Data General Ada
Development Environment and was rehosted to the Digital Equipment Corporation's
VAX running VMS.

h. The University of Houston at Clear Lake did a partial implemenation of the CAIS
as a class project under Dr. Charles McKay on the Data General Ada Development
Environment. This work was completed in the spring of 1985.

i. Honeywell completed a partial implementation to exercise their compiler in 1985.

It is expected that the KIT support contractor (beginning their KIT support contract
in January 1986) would do a prototype implementation of the CAIS.

k. The CAIS 2.0 contractor will be developing a full implementation of the CAIS.

1. The government-sponsored WIS effort had been working on a "parallel"
implementation for its SDME. Little is known at this time on this effort.

At the time of the Workshop, there were four CAIS implementation efforts in progress.

Dr. Timothy Lindquist has been developing an Operational Definition of the CAIS, first at

Virginia Tech, and currently at Arizona State University [31

The MITRE Corporation [6] and GOULD, Inc. [5] have been developing prototype

implementations of the CAIS.

4 CAISWG/CIG/SEI PROCEEDINGS

At this Workshop, it was announced that IBM has begun a prototype implementation of the

CAIS; no further details were given.

Since the Workshop, it has been announced that a team consisting of Sof Tech and Compusec

has been awarded a contract to design the next version of the CAIS. As part of this

contract, there is a requirement to develop a prototype for the proposed MIL-STD-CAIS as well

as for the CAIS 2.0 design.

The current contract that has been awarded to TRW, Inc. for KIT support also includes a

provision for a CAIS prototype.

1.2 Goals of the Workshop

The first organized meeting of the designers of the CAIS and several implementors was held

October 29th and 30th, 1985 at the University Inn in Pittsburgh, Pennsylvania. A list of

attendees is given in the appendices. The goals of this first meeting were:

1. The exchange of information between the designers of the CAlS (members of the
CAIS Working Group (CAISWG) of the KIT/KITIA) and those groups (mainly
represented by the CAIS Implementors Working Group (GIG) of SIGAda) actually
doing prototype or development of the CAIS, resulting in a set of issues that need
to be addressed and possibly acted upon during the evolution of the proposed MIL-
STD-CAIS.

2. The introduction of other environment ideas (most notably UNIX and PCTE) to the
CAISWG and CIG for possible inclusion into the CAIS during its evolution.

3. The discussion of these issues as well as ones to be raised at the meeting.

1.3 Participants

Besides members of the CASWG and several implementors, several representatives from the

Software Engineering Institute (SEI) and two members of the WIS Operating System Task

Force were present. Four members of the research staff of the Institute for Defense Analyses

(IDA), the host for this meeting, also attended.

Members of the CAISWG included: Herman Fischer, chair of the KITIA, who also has been

extensively following the European environment efforts; Tim Harrison of Texas Instruments,

who was one of the original members and who has provided most of the inputs to the I/O

section of the document; Tim Lindquist of Arizona State University, who has been the leader

of the CAIS Operational Definition effort; Hans Mumm, acting chair of the KIT; LCDR Philip

I NTRODUCT I ON 5

Myers, who is currently the Navy representative on the AJPO and who has been foremost in

the security aspects of the CAIS; Erhard Ploedereder of Tartan Laboratories, who has provided

much input to the data administration facilities and the node model of the CAIS; Carl

Schmiedekamp of Naval Air Development Center, Ray Syzmanski, who is the chair of the

Evaluation and Validation Team (sponsored by the Ada Joint Program Office), and Richard

Thall, who is the chief architect of the Army's Ada Language System.

The implementors were represented by Gould, MITRE, and IBM. GOULD was represented by

Pete Carr, Mike Doub (Manager, Ada Project Development), and Robert Stevenson (Manager,

CAIS Project). Representing MITRE at the Workshop were Helen Gill, Chuck Howell Robbie

Hutchison, Mike McClimens, and Tana Reagan. IBM was represented by Jeff Vermette of

Federal Systems Division in Manassas, Virginia.

Two members of the WIS Operating System Task Force were also present. Jack Stankovic,

currently at Carnegie-Mellon's Department of Commputer Science is the chair of this task

force. Also in attendance was Mike Liu of Ohio State University.

The chair of the CAIS Working Group of KIT/KITIA is Jack Kramer. He has been the

Navy representative of the AJPO and one of the original designers of the CAIS. He is

presently Director of the Computer and Software Engineering Division (CSED) at IDA.

1A Format of the Workshop

The agenda is included in the appendices.

General areas of discussion included: CALS Security requirements, the CAIS and other

environment development efforts (including PCTE, the WIS Operating System, UNIX, etc.),

Input/Output packages in the CAIS, the CAIS package LIST.UTILITIES, Distributed CAS,

CAS and the Space Station, and a list of issues brought forth by the implementors.

After the welcome was given by Clyde Roby of IDA, general introductions were made.

Information was then imparted concerning the status of various CAIS-related activities.

Following this, discussions then began on some of the major issues.

6 CAISWG/CIG/SEI PROCEEDINGS

STATUS OF CAIS-RELATED ACTIVITIES 7

2.0 Status of CAIS-Related Activities

Hans Mumm, acting chairperson of the KIT (in Patricia Oberndorf's absence), stated that

there was currently no KIT support contractor on board (the KIT support contract was

awarded to TRW in December 1985). Neither was there a contractor announced for the CAIS

2.0 work (the team of SofTech and Compusec was awarded this contract in December 1985).

There was some concern about the status of the CAIS comments that have been submitted

by the CAIS Implementors and reviewers of the CAIS document. Comments should still be

submitted to CAIS-COMMENTS and the KIT support contractor will address these soon.

The major differences between the proposed MIL-STD-CAIS and CAIS 2.0 is that there will

be a resolution of differences between the proposed MIL-STD-CAIS and the Requirements for

CAIS 2.0. Any technical changes will first be brought to (Hans Mumm and) Patricia

Oberndorf as chair of the KIT and these will then be brought before the KIT/KITIA as

appropriate.

The CAIS 2.0 contractor will be developing a prototype implementation. It was

emphatically stated that there was a requirement for upward compatibility of CAIS 2.0 with

the proposed MIL-STD-CAI& In the standardization process of the proposed MIL-STD-CAIS,

there should not be any major differences as CAIS 2.0 evolves.

There are two major reasons for the standardization of the CAIS:

1. Getting the attention of all the necessary (environment and Ada) communities

2. Opening up the CAIS for examination by a wider audience

People are beginning to sign up for the standard. It will have prototype implementations

and will be examined in other means, too. As long as the standard becomes a product,

industry should accept it.

Some concern was raised about the perceived difference between the proposed MIL-STD-CAIS

(CAIS Lx) and CAIS 2.0 because of the number. It was brought out that the CAIS 2.0

contractor would only slightly evolve the CAIS similar to the way that the Ada language

standard MIL-STD-1815 evolved to MIL-STD-1815A. It was also suggested that a different

means of referring to CAIS 2.0 would be appropriate at this time because of industry

perceptions.

a CAISWG/CIG/SEI PROCEEDINGS

SECURITY ISSUES 9

S

3.0 Security Issues

The first major issue addressed was that of security. Can the CAIS Security Model be

* implemented on an unsecure host? CAISWG's intent was to design the CAIS such that it

could be implemented on a secure kernel. An implementation can make it better but it still

is not really secure.

* MITRE deferred their" implementation of any Security Model because most tools that they

have implemented do not call on the security interfaces. Security people within MITRE have

questioned the implementation of the CAIS on top of a secure operating system and suggested

that it must be re-evaluated in this context. MITRE was also concerned with the history of

* the Security section of the CAIS being subject to change the most in the near future - they

are basically waiting until that portion of the CAIS stabilizes.

LCDR Philip Myers, Navy representative of the AJPO and also representing the security

* community, was disturbed that none of the implementators were evaluating the CAIS Security

Model to determine if the CAIS can be implemented on a secure system.

Both MITRE and GOULD are currently putting strictly application code on top of the CAIS;

GOULD did address the discretionary access controls.

It was suggested that if the implementation is done this way, then the whole purpose of a

secure system is defeated. The reply to that was "Not really - all users coming into this

system would be on the same security level."

The only requirement concerning security in the CAIS is that the CAIS functionality not get

in the way of security requirements mentioned in the so-called "Orange Book", Trusted

Computer Security Evaluation Criteria [121

There are two issues if one settles on a Security Model similar to that of the proposed MIL-

STD-CAI:

• I. For a CAIS implementation on a Multi-Level Secure system, does it have problems
in the Security Model?

2. For a CAIS implementation on a System Level High system, mandatory access
control must be the default.

16 CAISWG/CIG/SEI PROCEEDINGS

The CAISWG is interested only in the semantics of the CAIS. This cannot go counter to

security.

LCDR Myers said that it is necessary that the CAIS does indeed specify default situations,

especially when the CAIS is booted up on an unsecure system or on one that has no

underlying security mechanisms. In the design of the kernel, the CAIS implementation must

be addressed in order to determine that it does not belie security.

Is the CAIS giving a false promise concerning security? Some of the security portions need

to be pushed into the kernel. There needs to be a separation of the secure mechanism in the

kernel from the CAIS.

It was brought out that an implementation on top of a secure kernel is not really a

problem until the database is moved to another implementation. The CAIS 2.0 contractor will

have to address the movement of tools and data between secure systems.

Tim Lindquist continued the discussion by raising the following three questions:

1. Can the CAIS be implemented on a bare system and be secure?

2. Can the CAIS be implemented on a secure system and the result be secure?

3. Can the CAIS provide the appropriate functionality for tools on a secure system?

He said that the Workshop really needs to address the first two questions.

With respect to the "Orange Book", an evaluation needs to be done of both the underlying

operating system and of the CAIS. The evaluator does not care where the Trusted Computer

Base is located.

The design of the interfaces for a bare CAIS implementation is different from the design of

the interfaces for a piggyback implementation. The answer to (1) above is yes. There seemed

to be no general answer to (2) above.

The CAISWG is trying to design the CAIS so that (2) above can be answered positively, ie,

so that an implementation of the CAIS on a secure kernel can be done with the result being

secure. If the CAIS cannot be implemented on a secure kernel, then a major problem

definitely exists.

SECURITY ISSUES 11

The CAIS does not make, additional promises. The CAIS can be implemented on a secure

system but still be unsecure (this is a poor implementation, though).

The CAIS does not have a Mandatory Secure Model and any Mandatory Secure Model can be

inserted in the CAIS; (1) above must be addressed.

Can the CAIS be implemented on top of a Trusted Computer Base? The only example of a

secure system that we currently have is MULTICS, but it does not have any Ada language

support tools on it.

Richard Thall of SofTech noticed that there is a division of labor between the CAISWG and

* the CAIS Implementors Working Group. The CAISWG developed the interfaces. The

implementation of the interfaces will have to be devloped by a lot of different groups in a

mono-level (system high) mode and then moved (for maintenance) to a Multi-Level Security

sytem. He said that items should be marked in the proper level so that when that

movement occurs, it would go to the proper place in the Multi-Level Secure system. He

asked the implementors, "Can a marking system be developed to aid this?"

LCDR Myers indicated that these labels are useful in mono-level systems but there is a

danger that the people who use them would "lull" themselves over time to trusting the

multi-level labels in the mono-level system.

Since this meeting, further discussions have continued. There is a definite requirement for

security in the Requirements and Design Criteria document for the CAIS [81 However,

nothing at this time has been firmed up.

12 CAISWG/CIG/SEI PROCEEDINGS

GENERAL PACKAGE STRUCTURE 13

4.0 General Package Structure
The general package structure of the CAIS leaves a lot to be desired in the minds of many

of those that were present.

Tim Lindquist, who has been working on an Operational Definition of the CAIS, said that

the usage of type NODETYPE (a limited private type) in the CAIS needs to be reviewed.

It was generally agreed by the CAISWG membership present that rearranging some of the

CAIS packages was all right for an implementor to do - especially the NODE-DEFINITION

package. Most implementors have moved all type definitions to the CAIS package level, i-e,

to the outermost package level.

Concerning an implementation of package ATTRIBUTES, Tim Lindquist indicated that an

attribute could have complete access to LIST-TYPE. The way it is, attributes can be

implemented using the LISTUTILIES package, or, by converting them to an object of type

STRING and then into an internal representation.

Erhard Ploedereder, one of the original designers of the CAIS, said that this is the same

problem as with type NODE-TYPE. All limited private types should be accessible in CAIS

implementations.

It was noted that process control (package PROCESS_DEFINTIONS) uses LISTTYPE for its

results list. RESULTSLST semantics states that RESULTS-LIST can't be seen other than

through the interfaces (iQe, not through any of the ATTRIBUTES packages).

The idea behind having specific interfaces for some of the attributes was that an

implementation would get the information from the operating system rather than from

attributes on the node.

Jack Kramer, chair of the CAISWG, said that all limited private types should be moved to

the (outermost) CAIS package. He said that in the design of the CAIS, there was a desire

not to limit how intelligent implementations should be.

14 CAISWG/CIG/SEI PROCEEDINGS

4.1 Exceptions

Another general problem concerned the definition of exceptions and what they actually

cover. MITRE has encountered this problem and has suggested an alternative. Following is

the discussion on exceptions, exception names, and the possibility of creating a higher level

package containing just the CAIS exceptions.

There are multiple and overlaying exceptions. Some have broad reasons for exceptions

(USE-ERROR, for example). There are minor semantics with respect to some of the cases but

clarification would help the tool writer.

When asked, "Does this proliferate the number of exception handlers?", MITRE's response was

"Not really. It does not change the semantics of exceptions."

MITRE identified two different problems:

1. USE-ERROR is defined in two different packages (there should be just one at the
CAIS package level). This would allow us to continue to follow the Ada
language example of renaming exceptions.

2. There is a need to expand the exceptions to cover the real reasons for their
occurrence. MITRE has 18 exceptions defined and they are defined in one place.

The implementors said that the current CAIS is not really granular enough to explain the

reasons why exceptions occur.

MITRE's suggested CAISEXCEPTIONS package is shown on the next page.

GENERAL PACKAGE STRUCTURE 15

-- MITRE's suggested package for exceptions in the CAIS.

package CAISExceptions is

NodeNameError exception;
NodeUseError exception;
NodeStatusError exception;
NodeIntentError exception;
NodeLok_Error exception;
Node_AccessError exception;
NodeSeourityError exception;
NodeModeError exception;
NodeDataError exception;
NodeEndError exception;
NodeDevice_Error exception;
NodeLayoutError exception;
PathnameSyntaxError : exception;
ExistingRelationshipError exception;
NoSuch_RelationshipError exception;
PredefinedRelationError : exception;
PredefinedAttributeError. : exception;
ListSyntaxError : exception;
ListUseError exception;
ListSearch_Error : exception;
ListNameError : exception;
CAISInterDals_Error : exception;
HostError : exception;

end CAISExceptions;

16 CAISWG/CIG/SEI PROCEEDINGS

4.2 Interaction among CAIS Input/Output Packages

The combination of Input/Output packages in the CAlS opened up several questions with

respect to interaction of different packages on the same file or node. This was the next

subject of discussion.

CAISWG Interaction of different I/O packages on the same file was specifically left
out of the CAIS document.

CAIS Implementors:
Did you explicitly go away from any model?

CAISWG: The idea of passing a file to another process (since the process does not
know what kind of file, e.g, disk, terminal, etc., is passed to the other
process). Do we not allow passing of file nodes?

CAIS Implementors
Separate file types would adhere to the Ada model.

CAISWG: It has been suggested that we do away with file types, particularly due to
access control.

Access synchronization is good for the nodes. Historically, we wanted to
stay compatible with the Ada I/O packages, but it looks like we'll go with
the "get rid of the FILE .TYPEs" suggestions.

CAIS Implementors:
That would seem to be nice and consistent.

CAISWG: We've tried to keep the world as uniform as possible.

CAIS Implementors:
It would help to have interactions or the lack thereof explicitly stated in
the CAIS document. Basically, we are arguing for clearer semantics.

It must be made clear what happens on mixed file types.

CAISWG. The level lost here is less consequential. We gain advantages as tools
become more portable. Although there might be 1-2% degradation, the tools
would be more useable. UNIX offers everything as a file, whether disk,
terminal, or whatever. We need that uniformity.

CAIS Implementors:
There are two philosophies: one universal type versus many types but
maintaining uniformity.

I/0 redirection is necessary.

GENERAL PACKAGE STRUCTURE 17

CAISWG: -In designing the CAIS, who is it that manipulates the mapping between the
physical and the logical mappings of the world? We want to provide I/O
redirection where the tool doesn't care. We want the runtime flexibility of
I/O reassignment.

CAIS Implementors:
Things need to be nailed down more explicitly in the CAIS document.

CAISWG: We did not want to duplicate the Ada LRM's Chapter 14 semantic
Implementation-wise, file types are usually different.

CAIS Implementors

TEXTIO and SCROLL_10 really don't mix.

Intermixing of them is a problem (keeping track of the cursor, etc.).

CAISWG: In the design of the CAIS, numerous discussions were held about tools and
packages. When a tool uses the lower level of abstraction supported by the
device, it should be allowed to do that. On the other hand, it is
unreasonable to expect that a tool using a more sophisticated device to
behave properly on a less capable device. In a sense, we want to achieve
portability upwards.

CAIS Implementors:
We need to nail down these interactions.

CAISWG. A tool should not know where its 1/O goes to.

CAIS Implementors

Redirection is different from access mechanisms.

Redirection is necessary; interaction is not desired.

CAISWG: We must properly define semantics for all packages and interfaces.

4.3 Processes

The discussions concerning Input/Output led into discussions about the spawning of processes

and into the discussions dealing with logon/logoff and "dead" processes.

CAISWG. For the interface CREATE-JOB, the process execution tree remains as long
as the process tree remains. The background job can be created on another
process tree. Then you can logoff and let the process run.

CAIS Implementors:
In the daily use of UNIX. one shifts things in and out of the background.

When one logs off, the active processes go up a level to the subinitiator.

18 CAISWG/CIG/SEI PROCEEDINGS

CAISWG: UNIX is the only operating system that provides it.

There should be no overhead in keeping "dead" nodes in the tree around.

CAIS Implementors:
This is an undefined example of interaction between processes and file nodes.

CAISWG: Once you get to processes, you have a problem.

Logout and login are not defined in the current CAIS. There are several
implementations possible.

We still have the ownership problem of the terminal node.

That is still an implementation issue; one could kill the process.

CAIS Implementors:
Implementation issues need to be explicit in the CAIS document.

CAISWG: Then we must define logout, login, the shell, etc, but "Implementors have
favorite biases and we go towards a higher calling."

CAIS ITERATORS 19

5.0 CAIS Iterators

CAIS iterators evidently caused some problems for the implementors

Herman Fischer, chair of the KITIA, has been following the European efforts on

environments very closely - in particular, he has been extensively involved in following the

Portable Common Tool Environment (PCTE) effort. He said that the PCTE iteration paradigm

returns tables corresponding to a group of names.

Mike McClimens of MITRE indicated that:

1. The operation set seems fairly small - it is only done in alphabetical order.
There might be room to add more iterators. It would also be good to return the
number in the set.

2. For node iterators, what is really in the node set? A lot can happen by the time
a node is put into the set and by the time it gets used.

Erhard Ploedereder said that it's possible that the set doesn't have to be created. An

implementation could simply use a pointer (and thus do complicated things at the iterator).

The same attitudes are present here as with the operating system - tough luck if something

unexpected happens.

Richard Thall, chief architect of the Army's Ada Language System (ALS), said that the ALS

has added interfaces to do work in blocks or groups. The invocation of the CAIS interface

usually invokes an operating system interface or supervisor call interface so reducing the

number of calls is beneficial. Beyond the bounds of the CAIS, the structure of iterators is

similar to wildcarding. This is not too well defined in the ALS. The CAIS idea of a node

name is not well developed. Wildcarding over attribute values (presence of attributes versus

* contents of attributes) is important in structuring iterators. The tendency should be in getting

sets, groups, or blocks.

Herman Fischer indicated that it would be useful to return a block to an Ada language

interface with work being done in routines in between. If one does a string match and a

count is requested, one needs thiL An open handle to a node is needed. The primary

relations are not affected. In a way, this is a CAIS issue, but the user may want the

information but would have to go through it.

Tim Lindquist said that this is an issue of late binding versus early binding.

20 CAISWG/CIG/SEI PROCEEDINGS

Even late binding has surprises. Something could be inserted as tree traversal is being done

during the processing of the iterator. Nothing can be done about safety with respect to the

interfaces. The only other issue is efficiency. The option is open to the implementors.

If the names are returned to a user en masse, the user has it. Otherwise, different things

could happen in different cases.

When an open node from an iterator is passed to the PATHKEY or PATHRELATION

function, it will return a relationship that that came across. Delayed binding implies going

after it by the primary key. Whether the relationship exists or not, the string is returned.

Going a level down, some boundary conditions are undefined. More explicitly defined

semantics are needed. For example, what does "iterator being exhausted" mean in the

GET_.NFXT procedure?

MITRE talked about ways of picking things (in their development effort) - currently there

is PRIMARYONLY, etc. More could be added, e.g, SECONDARY-ONLY,

PRIMARY_ANDSECONDARY, etc. They would also like a way to get only file nodes or

only process nodes, etc.

The solution is to have an enumeration type.

Jack Kramer replied that this is where real tools on a CAIS implementation is useful. If a

lot of tools use something, then CAISWG would pay more attention to the implementors in

that particular area.

MITRE uses a flat file structure; they don't map to the UNIX directory structure. Instead

of returning open node handles, it would be better to return the string name. For the most

part, something needs to be done so the node handle is returned instead of the string. This

was the argument.

Then AND instead of OR is needed for returning the string name.

Although some members of the Workshop would rather see regular expressions since user's

tools really could do something with regular expressions, it was pointed out that regular

expressions may not be needed when attributes are present in the CAIS.

CAIS ITERATORS 21

One is constantly comparing trees when two baselines need to be compared. - In the ALS, it

is done in alphabetical order and that will be the standard. Richard Thall told the Workshop

that an ALS user called (the ALS Hotline) not too long ago and wanted a different ordering.

No matter what order is picked, someone will differ.

A path iterator and a comparator could be used. One can do it with existing interfaces if

it is built on top of them.

Erhard Ploedereder gave a little discourse of the background for having the KIND attribute

present in the CAIS. Different kinds of nodes will probably be implemented differently. It's

an implementation concern as well as a usage concern.

Everyone should look at the need for additional interfaces. There may be a need for more

specific ones.

0

0

0

22 CAISMG/CIG/SEI PROCEEDINGS

WIS OPERATING SYSTEM (WOS) AND THE CAIS 23

6.0 WIS Operating System (WOS) and the CAIS

6.1 Introduction to the WIS Operating System

The World Wide Military Command and Control System (WWMCCS) is an arrangement of

personnel, equipment (including automatic data processing (ADP) equipment and software),

communications, facilities, and procedures employed in planning, directing, coordinating, and

controlling the operational activities of US Military forces.

The WWMCCS Information System (WIS) is responsible for the modernization of WWMCCS

ADP system capabilities, including information reporting systems, procedures, databases and files,

terminals and displays, communications (or communications interfaces), and ADP hardware and

software. The WIS environment is a complex one consisting of many local area networks

connected via long distance networks. The networks will contain a wide variety or hardware

and software and will continue to evolve over many years.

The main functional requirements for WIS are presented in [13]. Briefly, the functional

requirements have been categorized into 7 areas.

1. Threat identification and assessment functions involve identifying and describing
* threats to US interests.

2. Resource allocation capabilities must be provided at the national, theater, and
supporting levels.

3. Aggregate planning capabilities must provide improved capabilities for developing
suitable and feasible courses of action based on aggregated or summary information.

4. Detailed planning capabilities must provide improved methods for designating
specific units and associated sustainment requirements in operating plans and for
detailing the sustainment requirements in supporting plans.

0
5. Capabilities must be provided to determine readiness, for directing mobilization,

deployment and sustainment at the JCS and supported command levels, and for
promulgating and reporting execution and operation orders.

6. Monitoring capabilities of the system must provide the information needed to relate
* political-military situations to national security objectives and to the status of

intelligence, operations, logistics, manpower, and C3 situations.

7. Simulation and analysis capabilities must include improved versions of deterministic
models that are comparable to those contained in the WWMCCS.

0
In order to support these high-level objectives, the WIS system software must provide an

0

24 CAISWG/CIG/SEI PROCEEDINGS

efficient --extensible and- reliable base upon which to build--this. functionality. To develop such

system software several projects are planned for prototype foundation technologies for WIS

using the Ada programming language. The purpose for developing these prototypes is to

produce software components that

1. Demonstrate the functionality required by WIS,

2. Use the Ada programming language to provide maximum possible portability,
reliability, and maintainability consistent with efficient operation, and

3. Demonstrate consistency with current and "in-progress" software standards.

Foundation areas in which prototypes will be developed include:

1. Command Languages
2. Software Design and Analysis Tools
3. Text Processing
4. Database Tools
5. Operating Systems
6. Planning and Optimization Tools
7. Graphics
8. Network Protocols

The most important ingredient for a successful WIS is the design and implementation of a

suitable distributed operating system. The WIS Operating System (WOS) is a distributed

operating system in the sense that it provides an abstraction of a single system across network

connected multiple machines. The design of the WIS Operating System is a well-balanced

design that has significant potential for meeting the requirements of WIS. For example,

effective performance is achieved by providing a minimal kernel that optimizes Local Area

Network (LAN) Inter-Process Communications (IPC), contains a very fast context switch and

supports "lightweight" kernel tasks. Security is supported in the kernel by having clearly

delineated address spaces, basic mandatory access control and all communication controlled via

the IPC mechanism which can ensure that the proper security access is followed. Security is

also supported outside the kernel by (1) "alias" processes which implement and serve as

safeguards for inter-cluster communications, and by (2) an authentication agent. Fault

tolerance is provided, in part, by the distributed nature of the system, as well as by the fault

tolerant distributed file system. Extensibility is enhanced because of the multilevel and

modular design of the WOS as well as the use of the Ada programming language and

adherence to the CAIS.

WIS OPERATING SYSTEM (WOS) AND THE CAIS 25

The structure and modularity of the WOS can be explained by considering three main levels

together with the concept of an agent. An agent is a module that implements one or more

Ada packages to provide some service such as authentication, logging and auditing, or secondary

storage management. The three levels are:

Level I (Kernel. The kernel provides an efficient base for transparent (network-wide) IPC,
security, and basic process, main memory and device support. It also
provides basic support for the CAIS and the concept of an object. Each type
of object is viewed as an abstract data type. WIS Operating System objects
include open files, atomic transactions, jobs, processes and virtual spaces. The
kernel provides operations for invoking operations on objects between
processes, such as found in the message passing scheme. It also provides
operations for changing the amount of valid memory associated with a task
plus mapping portions of files in and out of the address space. Other types
of objects and operations on them can be defined at the other levels.
Further, language processors are free to define other types of objects either
using these basic WOS objects or independently.

Level 2 (Run-Time Support):
* OFacilities that need not be implemented in the kernel are implemented in

server processes that execute outside the kernel as well as by so-called run-
time procedures that execute in the address space of the invoker. The run-
time support level provides this necessary Operating System functionality
that is not included in the kernel. This level is extensible and initially
includes the following agents:

1. Secondary Storage Memory Management
2. Program Execution Module
3. Authentication
4. Time Synchronization
5. Command Language Interpreter
6. IPC support
7. Logging and Auditing
8. Alias processes support
9. Print Server

10. Multi-window server
11. I/O drivers
12. Transaction manager
13. Name Server

Level 3 (Application.
The application level includes application programs and other agents which
are not necessary for run-time support. This includes the DBMS, user
application tasks, and non-essential Operating System utilities.

It is intended that most of the WOS will be implemented in the Ada programming language

and adhere to the CAIS.

26 .,AISW/CIG/SEI PROCEEDINGS

6.2 Overview of the WIS Operating System (WOS)

Jack Stankovic spoke on what the WOS Task Force has been doing; he is the leader of the

WOS Task Force. The following paragraphs summarize his discussion.

Most things that we want to do in a distributed operating system can be tailored to the

CAIS directly, or hidden in the kernel (below the CAIS interface).

There is one scheduling policy for local tasks and a different scheduling policy for

distributed tasks. The WOS is designed in about 13 different major packages - these form

the basis .or distributed systems.

Jack Stankovic was concerned with pushing off issues of distribution, security, and tool

interoperability by the CAISWG. WIS is largely a DBMS. The old WWMCCS is

commercially oriented, with COBOL as the main implementation language.

The purpose of WIS is to provide information. It is also a development system. The CAIS

model is also applicable for mission critical systems and for mission support. The CAIS has

no realtime process control, but there are no requirements for WIS in this area at this time.

How does this compare with the WIS Software Development and Maintenance Environment

(SDME) effort? The WIS Task Force is funded by the Joint Program Management Office.

This program is to look into risk reduction technology and development. The SDME is run

by the Special Projects Office out of Bedford, Massachusettes. Hopefully, the WOS will be

implemented.

Each of the four members of the Task Force has given about two-to-three days per month

effort towards this work. The purpose for representation of the WIS Operating System Task

Force at this meeting was to see where problems have surfaced in the CAIS. All the issues

here discussed are relevant.

The kernel is influenced by the CAIS, but does not implement the CAIS.

A lot of the CAIS interfaces are implemented by the first two levels of the WOS Kernel -

primarily files and processes, so there will be additional software built on top of it.

The CAIS could be implemented on top of the WOS. Basically, we are doing a CAIS

implementation on a bare machine. There is a quite detailed specification for the WIS

WIS OPERATING SYSTEM (WOS) AND THE CAIS 27

Operating System [13].

How much distribution should be viewable by the user? How much distribution should be

viewable by the tools? The tool being able to specify a particular host may be bad, but

specifying parallelism should be present in the CAIS.

Ada/CAIS parallel specifications issues have arised. Do you allow a task to migrate after

execution has begun? Our answer is no.

6.3 General Discussion

The following general discussion is in the form of comments and questions given by

individuals and Jack Stankovic's responses to them.

Herman Fischer. How do you determine where a task goes?

J. S. A process can be distributed. The scheduling algorithm needs a lot of state
information. We don't want a localized scheduler policy. Localized and
globalized schedulers exist.

Jack Kramer. I define a "system" as being the runtime system, whether that is on a
single processor or is distributed over several processors. One runtime system
will worry about the distribution of processes.

J. S_ The PCTE wants to force the initial execution of a certain task to work on
a certain processor. There are a lot of trade-offs involved.

Chuck Howell: Is the model extended to heterogenous hosts?

J. S_ As long as there is an adherence to protocols, there is no problem. We
won't [currently] move tools after execution begins. However, if the [WOS]
contractor wanted to propose that, they would have to come back to the
Task Force to have their design checked out. There are systems today that
move processes from host to host on the fly.

Fault tolerant mechanisms are separate from the initial process distribution.
WIS requirements have kept the complexity down. There are other ways of
checking this out, e.g, N processes communicating loosely so that N-i
continue to execute when one goes down. Dynamic load balancing may not
be necessary.

Richard Thal: What taxonomy of task organization/distribution is used?

J. S_ A local node could be a multi-processor with shared memory. Most multi-
processors are similar. There are some mechanisms for hiding distribution.
We do have LAN protocols and gateways.

28 CAISWG/CIG/SEI PROCEEDINGS

The CAIS is going to be used in a distributed manner. But there is a
problem in defining the CAIS before some of these uses, ie, before
complicated tools become available.

Jack Kramer That was one of the issues CAISWG had a horrible time with. At the
CAIS level, we are talking process to process. We looked at the initial Ada
tasking model but dropped back to the current queue model.

Herman Fischer. Did you talk about a security model?

J. S_- We have discretionary access control. We are to have mandatory access
control but are interfacing with the Database Group on this. The
granularity of data elements with respect to access control is still being
addressed. We need some kind of mechanism. The Database Group wants
the operating system to support it; the Operating System Group wants the
Database to support it. We are going for a B3 level on the host node
level. Distributed nodes are B3 level on secure LANs communicating via
encryption methods.

Jack Kramer. The National Computer Security Center is evaluating systems against the
evolution of the Orange Book. They are currently generating Network
Evaluation Criteria. They also will generate Database Evaluation Criteria.
They are a long way aways where Network Criteria is generated to be
accepted by the security community.

Herman Fischer. There will be a problem qualifying these things over several links.

LCDR Philip Myers:
The view of it now is to view the network as a system and evaluate it as
a system. WIS is not going into this area blindly.

Jack Kramer. This is the foundation technology part of WIS. We may not get there. It
might be too expensive. But we have the ability to ask to try to get
there.

J. S_ We are trying to require it - various aspects of the B3 model. The CAIS
keeps information about processes. In a distributed environment, we need
additional state information that can be added with attributes.

Jack Kramer. At one time, CAISWG had defined a layered set of process information but
realized that we were too close to the runtime system. What kinds of
things could be useful - that can be added as attributes?

This last question led into a discussion of attributes, particularly time-related attributes.

WIS OPERATING SYSTEM (WOS) AND THE CAIS 29

6A Timestamps and TIME attributes

Timestamps and other related attributes were found useful by MITRE, especially dealing

with configuration management and configuration control tools.

MTR indicated initially one can provide a partial ordering across the distributed

environment. This is still useful. They still want to deal with the time problem up front.

They are concerned with usability of tools.

CAISWG stayed away from "timestamp" because it was "undefined".

The WOS Task Force is still cautious with respect to timestamps. They are not using

concurrency control with timestamps. They don't want a lot of overhead, but must put in

the extra cost if needed.

Everyone agreed that there is a need for an attribute called TIME to solve these problems.

Jack Kramer indicated that the node model is in the CAIS because of configuration

mangagement issues. If TIME is something needed by a lot of tools, it makes sense to put it

into the CAIS in a standard way. CAISWG had the feeling that there were many TIMPs

(created, accessed, etc.). If the concensus around is about what TIMEs are needed, then

CAISWG should add them in

MITRE asked, "Without TIME, how is compilation order enforced? All Ada compilers

currently support it via TIME."

The CAIS implementors should decide which attributes are needed and bring their suggestions

to the CAIS designers. Then when there is agreement, the CAIS designers will put it in the

CAI& The implementors should determine which TIME-related attributes to have and agree

on them. CAISWG didn't know (from the infinite choices) what to do with respect to

attributes in general. The implementors should come to an agreement of what attributes they

want and the CAIS designers will put them in. GOULD indicated that there are already

STARTTIME and FINISH TIME attributes on process nodes.

As soon as one goes to a binary representation of date, there is a problem. There should be

a standard string representation or something else for the external representation. The addition

of predefined attributes and relationships should be up to the implementors and the user

groups.

30 CAISWG/CIG/SEI PROCEEDINGS

. Jack Kramer indicated that the CAIS designers are not in a position to know the complee

set of predefined attributes and relations. Implementors are in a better position to know that.

It was brought out that all of the members of the CAISWG had their own favorite attributes

and relations, rather than no idea of what should be in the CAIS.

6.5 Scheduling for Distributed Systems

Jack Stankovic discussed scheduling in the WIS Operating System.

The scheduling algorithm for distributed systems needs more information. This was kept

outside the CAIS - in a package STATISTICS in the WIS Operating System design. There are

no group related process things in the CAIS.

Concerning the question (in the original issues list handed out at the beginning of the

Workshop) about secondary relationships, we are concerned about maintaining primary and

secondary relationships consistently across a distributed environment. Should the pair of

relationships be maintained, especially if it is moved across the distributed environment?

The PCTE has all of the bidirectional relationships: one-to-one, one-to-many, and one-to-none.

However, the PCTE has a major security problem. Also, the PCTE does not have the notion

of a primary path.

The other issue concerns deletion of secondary relationships. Garbage is left around. Would

the Entity-Relationship model require deletion of relationships when the node is deleted? No,

the CAIS has no way of accessing those relationships once the node goes away.

6.6 Distribution and the Space Station

There was some discussion about the Space Station program and its use of a distributed

CAIS. [10]

Quoting from [01 the concerns that were brought forth in this article included the

deferment of the following areas:

1. Distributed environments. . .. Currently deferred is the decision whether or not to
provide to the user explicit CAIS interfaces to control the distribution of the
environment, including designation of where nodes exist and where execution takes
place. Note that a set of distributed processors could include one or more target
machines."

WIS OPERATING SYSTEM (WOS) AND THE CAIS 31

2. Inter-tool interfaces. The current CAIS does not define .. , the command
processor language syntax,. ... or the interaction between the runtime system and
debugger tools. Currently deferred are decisions regarding . . . and whether or not
to place constraints on the runtime system to provide process execution
information."

3. Interoperability. The current CAIS . . . does not define external representations of
data for transfer between environments or between a host and a target."

In the process of evolving later versions to meet the needs of distributed applications, it will

be necessary to decompose the process node of the current version to support a finer grain of

program element representation. The process node in conjunction with a queue node provides

a meta level representation of all program units of an Ada program. If the program to be

executed will spawn three tasks (each to be executed simultaneously on a different processor

which is remote from the processor responsible for the parent process) the currently proposed

process node (with its associated queue node) would be the single required CAIS repository of

information on the state of the program, resources being utilized, etc. It seems obvious that

for purposes of debugging, performance analysis, dynamic reconfiguration support, and many

other features that characterize distributed applications, a finer grain of representation is

needed.

32 CAISWG/CIG/SEI PROCEEDINGS

IMPORT/EXPORT AND THE CAIS 33

7.0 MPORT/EXPORT and the CAIS

There was a discussion concerning the use of data and tools moving back and forth from

* the CAIS environment to the operating system to which the CAIS interfaces. Discussions

were about bringing data files inside the CAIS environment and then back out again

(especially for Ada source compilation). A related topic was the usage of tools that normally

run outside of the CAIS but that could run inside the CAIS using CAIS objects for

4 input/output.

The discussion began with the question: Can MITRE port GOULD's database to MITRE's

database?

It would be a good exercise to define the CAIS node attributes and relationships using an

external representation. An import/export of the node structure itself would also be useful.

Issues of archiving need to be addressed. Solutions could be enumerated.

The ALS has a tool to collapse the tree and output it to a tape. The ALS contractors are

trying to come up with a bridge of the ALS to the CAIS.

Whether something like that should be in the CAIS or not is debatable. Implementors could

come up with a tool.

The external form could be standardized.

SCAIS 2.0 has a requirement for an external form.

Archiving, backups, and restoration highlight the need for special interfaces in the CAIS to

bypass configuration management in order to restore old versions.

34 CAISWG/CIG/SEI PROCEEDINGS

LIST-UTI LITIES 35

8.0 LIST_ UTLIS

Mike McClimens of MITRE led the discussion on the LISTUTILITIES package.

This is a very cumbersome set of interfaces. It provides the proper services but in a

clumsy way. We will present a proposal that will not change the utilities but make it more

useful.

Jack Kramer indicated that this was effectively ignored in the first three versions of the

CAIS. It was revised in a major way in the last month of the design of the proposed MIL-

STD-CAIS. Most of these came out of TRW's implementation.

Tim Lindquist said that the current model is difficult to understand. Why are there so

many interfaces?

It seems to MITRE that reasons for going from a string representation to a type

representation was for efficiency of implementation.

In terms of user convenience, it might be efficient. CAISWG has been constantly

importuned because attributes do not have types. In this sense, the LISTUTILITIES model is

a response to that. There used to be a FDIEDPOINT package as well; this was eliminated.

The same problem also exists in package DIRECTIO. CAISWG talked about changing token

information to indicate what type the value was.

The main reason for introducing tokens into the CAIS was for access control, instead of

dealing with them in quoted form. For predefined attributes, that type support is provided in

interfaces in an enumeration type.

CAISWG wanted to use the Ada aggregate for lists. It was suggested in the wording to

the effect that it should look like an aggregate. It should guarantee that the string going in

and coming out should be the same after the double conversion. Some examples should at

least be cited, e.g, page 193 (d) and maybe page 213 (5.4.1.23) of the CAIS document [21

It was noted that GOULD did not have problems in this area.

Mike McClimens of MITRE continued. We have proposed an expanded token model to

replace the current model. Lists are made up of tokens. The TO TOKEN operation is used

36 CAISWG/CIG/SEI PROCEEDINGS

for each type to put into the list. There is only one EXTRACT interface; it extracts a token.

It really does make a reduction in the overall number of interfaces. Also, currently

REPLACE is used for replacing type by type; we are proposing that REPLACE can replace

token by token.

Herman Fischer asked, "Doesn't this take away from the UNITY of the current interfaces?"

Richard Thall indicated that if it is in the user's domain, that could invalidate the lists.

Tim Harrison said that the user could, via UNCHECKEDCONVERSION, invalidate it

anyway.

It was generally agreed upon that MITRE's suggested LIST-UTILITIBS package was a cleaner

model (see the appendices).

Mike McClimens continued. Most things really stay the same. The separate packages

disappear. All the list item stuff should be in one package, anyway. About the only other

things that happen is the KIND operation which operates on a token. KIND could be user

extensible. A possible problem that one runs into, however, is the FLOAT and the

FIXED-POINT problem.

Another problem that was identified is that MITRE has a TO-LIST operation that becomes

difficult for extensibility. If one is going to want a general tool to work, it's not too

terrible to use the predefined string, or even ASCII.

EXCEPTIONS IN LIST-UTILITIES 37

9.0 Exceptions in LISTUTILITIES

MITRE also had specific suggestions for exceptions in LIST-UTMLITE& They suggested

moving exceptions out to a common layer and that the number of exceptions be expanded.

MITRE's suggested CAISExceptions package is contained elsewhere in these proceedings.

Currently, USEERROR is like a garbage can, ie., it is a general error collector.

Erhard Ploedereder indicated that there are two distinct situations:

1. One expects to give the USER enough information to recover.

2. One expects to give the TOOL enough information to recover.

The ALS has a list of 15 or so things that can go wrong and would like to find out

what's really wrong.

If exceptions are used properly, the error can be narrowed down to one procedure. One of

the concerns CAISWG has is the expectation of an implementation to do this. For the most

part, CAISWG cannot prescribe the ordering of the checking of exceptions.

The implementors said that there are some interfaces where some things CAN take

precedence.

The CAIS Rationale document [4] indicates that NAMEERROR usually takes precedence.

Again, it was brought out that the current CAIS specification should be reviewed for

consistency and clarity. CAISWG recognized the need to cover the second order stuff better,

too.

38 CAISWG/CIG/SEI PROCEEDINGS

ALTERNATE INTERFACES IN THE CAIS 39

10.0 Alternate Interfaces in the CAIS

The alternate interfaces are in the proposed MIL-STD-CAIS document in order to clarify the

semantics of some of the CAIS interfaces. The implementors, for the most part, have also

implemented many of the alternate interfaces.

The Alternate Interfaces are the strongest semantic definitions that one can get. The reason

why all the exceptions weren't there is that someone would probably come back to nit pick.

Initially, CAISWG didn't want the alternate interfaces to be part of an implementation.

There are lots of reasons why not to use the alternate interfaces.

The question was then asked, "Why not take out the alternate interfaces?" The fewer

interfaces, the better. Questions arise to an implementor if there are several ways to do

things.

GOULD thought that the alternate interfaces were just a suggested coding. They use the

alternate interfaces a lot, mainly for convenience.

GOULD also thought that some of the string oriented alternate interfaces would probably be

more popular. Listing all of the exceptions in the alternate interfaces wasn't needed for the

standard. MITRE asked, "Why not do the same thing as was suggested for attributes and

relations? Just let the community evolve to the usage of the interfaces." One value of

prototypes with tools is to get a frequency count of the usage of these interfaces.

It was pointed out that CAISWG hasn't paid enough attention to the tool writer. The

CAIS is not terribly too convenient for the tool writer. The ALS tries to make the KAPSE

interfaces as close to the command language as possible. If the toolwriter convenience is

necessary, then these alternate interfaces may not be necessary. But in this case, layers of

software would be generated. In the ALS, some common interfaces became macros.

Tim Lindquist indicated that the Operational Definition team has implemented the alternate

interfaces as they are shown in the specification document They think that the alternate

interfaces will be used, but don't know which ones are the "hot" ones.

40 CAISWG/CIG/SEI PROCEEDINGS

CAIS AND THE PCTE 41

11.0 CAIS and the PURE

11.1 Overview of the PCTE

Herman Fischer presented the overview of the Portable Common Tool Environment (PCTE)

and a comparison of the CAIS and the PC E. This was basically the same presentation given

at the KIT/KITIA meeting held in September 1985. These slides are included in these

proceedings.

The PCTE Object Management System is based on the Entity-Relationship model like the

CAIS. The main similarities of the PCTE to the CAIS include:

1. The node models are nearly identical.

2. The relationship models are nearly identicaL

3. The attributes are very similar.

The PCTE does have two function calls for LAN supported distributed processing. The

PCTE has true transparent distribution. Nodes and processes, pipes and messages, are fully

transparently distributed.

Relationships in the CAIS are unidirectional and n-ary only. However, relationships in the

PCTE are bidirectional and the arity is specified by the type.

11.2 Discussion on the PCTE

Discussion on Herman Fischer's overview of the PCTE then followed.

Richard Thall: So, with the PCTE, users can link their own commands into their own CLI.
The problem then is that a different search order is used because some
commands are linked into the CLI. The command interpreter was originally
in the KIT list of items to standardize (it was pointed out that this is not
true but that the CAISWG only agreed to discuss it).

The command language is a sensitive interface and shouldn't be addressed
lightly. The PCTE, however, is concerned with something that we did not
address. This is in respect to the window screen management.

Those interfaces are good for human interaction.

Mike McClimens What kinds of relationships and attributes are governed by the types (on
typed nodes in the PCTE)? What about I/O typing on operations on the

42 CAISWG/CIG/SEI PROCEEDINGS

file nodes?

H. F- We should also pursue process typing.

Richard Thall: I'm skeptical about the typing of operations, of files, and of nodes in the
environment. We need a clearcut reason why a typed environment is
needed. This is an exceedingly important issue. We need a clearcut
requirements definition of a typed environment. This probably should be a
future topic of discussion.

H. F- There is no typing on I/O. Working schemas are inherited by the children.
Renaming via move/copy can be done across workstations. There are
execution classes for different processors. These are associated with the
execution module to map onto the actual processors.

11.3 PCTE

Herman Fischer continued with more information about the PCTE

Product identity and ownership is confusing as seen by those in the United States. Also,

the PCTE can be one of three things. The PCTE is

1. A set of interface specifications.

2. A prototype extension to the UNIX kernel

3. A portable piggyback in implemented in the Ada language.

There is no United States participation in the PCTE efforts; especially noticable is the lack

of United States AT&T participation.

The UNIX 8th edition is architecturally and functionally compatible and architecturally has

implementation differences. The existence of the UNIX 8th edition was a total surprise to the

PCTE people. UNIX is a moving target.

The PCTE life cycle is not structured; it is not the way that we in the United States do

business. Project management is technically oriented; it is similar to a "corporate research lab"

in the United States. There are no marketing considerations. There is an unusually highly

trained staff of fourteen people on this project. The PCTE is the second environment worked

on by these designers (PAPS was the first one).

Because this is the second time for the development of an environment for most of the

CAIS AND THE PCTE 43

technical -staff, the node model IS -implementable and a schema on top of it IS implementablel

The PCTE has features that the CAISWG wanted but lacked the resources to work on:

distribution and user interfaces. The CAIS should benefit, ie, grow, from the PCTE

experience.

The PCTE Add-on Common Tools (PACT) was then discussed. Its most noticable attribute

was that the support for the Ada language was dropped!" It is not known whether support

for the Ada language is waning in Europe or whether the commercial people are tied into

UNIX.

How do the CAIS and the PCTE relate to each other with respect to the good and bad

points? The PCTE is based on a widely used commercially available operating system -

UNIX. Their abililty to copy with heterogenous hosts on a network is good. Their node

model is good. Herman Fischer thinks that typing is important, but as Richard Thall said,

"we must give reasons why it is necessary." The PCTE is good for desk top applications on

LANs.

On the interface set, distribution and typing are the main things that they have that the

CAIS does not have. They have two primitives for distribution; these two primitives should

not be difficult to implement, once included in the CAIS.

11A Further Questions on the pCTE

More discussion followed.

LCDR Philip Myers:
My impression is that the way they're doing this is rather loose; there is no

worry about ownership, documentation, etc. Is this the way they do
business over there?

H. F. Documentation is indeed performed on this project, but not as formal as
DoD. Documentation is done in a rather informal way, but it IS done.
However, don't think that informal documentation impacts the quality of
the product.

Richard Thall: The existance and use of the Ada language changes the way you deal with
BSs and C5s. Pseudo-code to code is different than the normal paradigm.
The government realized that standards are getting outmoded and are
improving those standards.

H. F- The Emeraud people had informal pseudo-code that stays back as comments.

44 CAISWG/CIG/SEI PROCEEDINGS

Erhard Ploedereder.
What is Portable about the PCTE?

-L F.- There is a binary license on UNIX for the kernel, et. It is really
compatibility rather than portability =- is the requirement (compatibility so
that existing tools can be ported into the environment). Machines that the
PCTE is to implemented include: Bull SPS-7, 3B2, PCS, Perq 3, Sun, and
Apollo. There is not a great deal of incentive to bring it up on the VAX,
but on several workstations. It is portable to a machine that runs the
System V kernel (with certain assumptions).

Erhard Ploedereder.
Then, it's a nice extension to System V and that's basically all.

Jack Kramer. The argument is that you could do the same thing to any operating system,

e.g, VMS.

There are two separate issues.

1. We need support tools for COBOL and other languages

2. If we don't capture what's out there, well lose a lot which is
really out there.

H. F.: Applications in COBOL must be preserved.

Jack Kramer. This is an example that many companies (IDA included) are struggling with
right now. The same machine shares all kinds of applications - software
development, accounting, etc. We want to preserve all this software,
including financial applications, etc. As an evolutionary step, it's something
that you want to deal with.

Richard Thall: The CAIS itself is oriented to software development. If we're going to
extend it to other areas (WIS, Space Station, etc.), we must examine our
basic assumption. Maybe we need typed stuff in these cases, then.

Jack Krame. There is a difference between content management and other configuration
management. In a sense, we are mapping from an object to particular
procese e.g., DBMS. There is a problem of applying old tools to objects
created by new tools.

L F- Even the PCTE has that problem.

Richard Thall: Any environment that does not validate the stuff coming into that
environment will crash. The nature of the Ada program is different from
COBOL programs in its dynamism. The real problem of building FORTRAN
or COBOL interfaces is with the exceptions turned into error codes, etc. In
the evolution of the ALS, it returned error codes because the interfaces were
really PASCAL

CAIS USABILITY AN IMPLEMENTABILITY 45

12.0 CAIS Usability and Implementability

Discussions then moved into the area of the implementability of the CAIS and about the

useability of the CAIS from the end users.

LCDR Philip Myers began the discussion with: If we ask the implementors to do the hard

things, we're looking for making life easier for the developers and for the maintainers

downstream.

Asked if the implementors have looked into moving their development efforts onto the

CAIS, MITRE and GOULD replied that their respective implementations are not yet mature

enough for that to be done at this time. Also, there is no Ada compiler available (with

interfaces to the CAIS).

12.1 CAIS Documents

A general discussion followed concerning the CAIS document itself. Many expressed the

sentiment that examples are needed in the document. An Implementos Guide is probably

useful - there is a need for it. The Reader's Guide [9] will be available in the short term

(the DRAFT Readers Guide is currently being reviewed). The CAIS Rationale document

[4] will answer many of the why and why not questions, but won't be available for

several months (a rough draft of the CAIS Rationale has been generated since the Workshop).

The CAIS specification document shouldn't be a user's manual.

It is not clear how predefined attributes are handled in the specification document. They

are spread out too much in the document. Which operations can be applied to the predefined

attributes? Do the defaults replace or add to what's there already? A table of predefineed

attributes and operations that affect them is needed.

These are the issues which some sort of CAIS documents must address.

12.2 CAIS Conformance Testing

Tim Lindquist also indicated that what is needed is an explicit statement concerning access

control at some of the procedure interfaces. Discretionary access checking at the OPEN

procedure may be an efficiency concern.

LCDR Philip Myers remarked that creation of things in the security world takes forever,

46 CAISWG/CIG/SEI PROCEEDINGS

anyway.

The Ada Language compiler's ACVC process is a good model. Operational tests are "proof of

the pudding". Implementors can debate any ACVC test. Then it's debated among a Fart

Reaction Team to determine whether the test or the implementation is right.

Ray Szysmanski, chair of the Evaluation and Validation Team, brought the Workshop

attendees up-to-date on various efforts funded by the E&V Team. On October 11, 1985, an

RFP went out for the CAIS Validation Capability (CVC). Funding exists for this project

through 1989. However, he couldn't say when test versions will be offered.

As implementors watched over the evolution of the ACVC, in a similar manner,

implementors can put any test into the test suite for the CAIS Validation Capability.

The possibility of a quarterly progress report at E&V Team meetings is good. They hope to

be under contract in March or April 1986. This will be for an operational test set for the

CAI&

The implementors need to get answers back from the CAIS designers quickly. They also

would like to have Binding Interpretations similar to those of the Ada Language Maintenance

Committee.

Currently, the SIGAda CAIS Implementors Working Group uses the account CIG-INFO@MITRE

to communicate among members of that community. Anyone who would like to be added to

this mailing list should send a request to CIG-RQST@MITRE or to HOWELL@MITRE or to

CROBYQADA20.

Tim Lindquist indicated that the constant limits need to be set properly. The behaviour

should be specified outside the limits so that the CVC could examine the behaviour. These

constants are lower bounds.

GOULD's main areas of concern include: Access Control, LISTUTILITIES, and Input/Output.

However, they have been in close contact with the CAISWG people during their

implementation.

Jack Kramer remarked that with the lessons learned from this Workshop, the implementors

should get together more often. A list of the first 20 or so issues shoud be generated so that

CAIS USABILITY AND IMPLEMENTABILITY 47

when the implementors get together again, they can discuss these specific issues more

thoroughly.

12.3 Access Control

It is difficult to read and understand access control the way that it is presented in the

CAIS document.

GOULD is not implementing Mandatory Access Control. They are implementing

Discretionary Access Control exactly as in the CAIS document.

Jack Kramer, chair of the CAISWG, encouraged everyone to look into the implementation

strategies for discretionary access control These may include cacheing strategies.

GOULD also mentioned that, in LISTUT.TIES, there is a lost facility (from earlier

versions of the CAIS) to mix named and positional parameters. In their CLI, they wanted to

follow the ALS idea of an Ada shell, but had to fudge around it in order to simulate it.

They open about six files at node OPEN time. The main reason comes down to

discretionary access control They can cache the whole lot at startup time. They've also

noticed that the CAIS specification has constantly been evolving in the area of access control

Once a complete implementation is done, everyone can step back and examine the efficiency

issues with respect to access control

LCDR Philip Myers said that, in practice, these (security-related items) are necessary

overheads. In a real-world environment, there's a big overhead.

GOULD cautioned that user nodes should not be manipulated inside the CAIS implementation

at all.

MI'RE said that they have been using (an implementation of) the system node for adding

users in real time. Adding users is outside the CAIS but it still affects user nodes in

running the CAIS.

The USER relation was supposed to be a special situation. However, it is not that terrible

a burden for MlTRE's implementation.

48 CAISWG/CIG/SEI PROCEEDINGS

The. system node was added only for a formal axiomatic definition of the CAIS. It is there

mainly for consistency and for logic, but that's its limit.

Richard Thall asked Gould: When processes are initiated, are the process nodes kept in the

database? They responded: Yes, all nodes are on disk to obey the CAIS specifications literally,

but later we will make it a daemon-like thing [in the UNIX sense

TOOLS IN THE CAIS 49

13.0 Tools in the CAIS

One of the topics brought out by the CAIS designers was tools and their availability.

Jack Kramer- Are there any problems with tools?

Pete Carr. Tools are fine but that's probably due to the Ada language.

Robert Stevenson: Most tools are 1/0 oriented. We don't have complex tools that really
maniuplate the node model. A minor problem in the GOULD environment
is the sheer size. Is the CAIS expected to fit on a workstation?

Herman Fischer: I expect to see a CAIS implementation on PC workstations with 5
megabtypes of memory and a Winchester disk.

LCDR Philip Myers:
I hope that we fend off the "all things to all people" syndrome.

Mike Doub: Concerning the importing and the import/export of tools into the CAIS, the
CAIS specification says to copy the data into it. We are concerned about
editing a file within the CAIS, then getting that file back outside of the
CAIS in order to be compiled by an outside Ada compiler, and then
bringing it back into the CAIS.

Jack Kramer. CAISWG felt that import/export interfaces had to be in there. rm surprised
that the word "copy" is explicitly stated there.

Tim Harrison: The intent was to make the file available so that the CAIS is consistent.

Mike Doub: We read "copy" as "copy byte by byte".

Jack Kramer: Consistency is an issue.

Mike Doub: It needs to be clarified semantically; it should be reworded at a minimum.

LCDR Philip Myers:
The intent is to have an object made unknown to the CAIS while the
object is manipulated outside of the CAIS and then vice versa.

Tim Harrison: When something comes into the CAIS world, this implies the addition of
CAIS attributes, etc.

Jack Kramer. As long as the CAIS node structure is maintained consistently, a physical
copy is not really implied.

Richard Thall: There should be a fairly large chapter in the Implementors Guide about the
relation of the CAIS world and the non-CAIS world.

5 CAISWG/CIG/SEI PROCEEDINGS

Jack Kramer: In a pure world, my view of- an implementation of the CAIS in the near
term will have to address differences in tools and data between the CAIS
database and the non-CAIS database. Where you have to mix two worlds,

the system manager will have to impose some rules. Implementations will
have to give some help during this time frame. During the transition
period, we'll have to live with system management. The CAIS node
structure must be consistent.

Mike Doub: MITRE thinks that something should be changed in the standard when
running other tools brought in under the CAIS. We're going to have an
agent to use the tools without physically importing the tool. Effectively,
this gives foreign tools their own little world.

Jack Kramer. Tools that have a database model in their architecture will not work.

Richard Thall: The kicker is the INCLUDE statement in a tool (compiler, etc.). Once a file
name is in the source, then you have a problem.

Mike Doub: This is an unsolvable problem in general.

Richard Thall: You can't take that agent thing too far.

Mike Doub: The other extreme is to trap operating system calls. That's no good. The
real solution is to have adequate tools out post-haste.

Richard Thalh For the government, the government should always have the source
available. I see a problem in that people want to use existing DBMSs,
graphics packages, etc.

The problem is even worse in secure environments. We can't tolerate that
sort of thing. A lot of these fancy things have a difficult time living in
the Ada RTS - most probably you will have some hooks into the operating
system. This is a very technical sticky issue. Ada's RTS makes heavy use
of VMS in the ALS.

Jack Kramer. The Ada model was designed with not too much look at an implementation
on existing operating systems.

Richard Thall: Mike Kamrad's ARTEWG is looking at these issues

Jack Kramer. Rich, if you had your choice of ten ALS tools to exercise the CAIS, what

would they be?

Richard Thall: The list would include the Command Language Interpreter, any tool dealing
with Ada program libraries, the compiler, the linker, the debugger, and an
exporter. The ALS data structure is great until you get to program
libraries.

Mike Doub: What you're talking about is the development of an Ada compilation system

TOOLS IN THE CAIS 51

on a CAIS implementation.

Jack Kramer. The Air Force's AIE (Ada Integrated Environment) is the closest environment
to the CAIS of all the environments produced thus far.

Richard Thall: I would like to see a configuration management system built on top of the
CAIS to support baselines, etc. It would be a really good exercise to let a
contract to do a configuration management system on top of the CAIS. I
think that it is very possible.

The real issue is controlling baselines, mixing users, etc.

Jack Kramer. It would definitely be a good exercise to do a configuration management
system on top of the CAIS. Conceivably it could be done today.

52 CAISWG/CIG/SEI PROCEEDINGS

PERFORMANCE IN THE CAIS 53

14.0 Performance in the CAIS

What are acceptable levels of performance in the initial implementations of the CAIS?

People will accept some startup overhead. If a tool operates poorly, users won't accept it.

14.1 Historical performance of the ALS

Richard Thall discussed some of the intial performance-related issues of the Army's Ada

Language System (ALS).

In the editors, once the I/0 for opening a file is completed, the actual I/0 goes okay.

Access to attributes is slow but not on a single attribute basis. The way tools are used, the

access attributes are fetched, everything on the path is then gotten, etc. - this adds up to

30-40 disk accesses per level in the ALS. There are two things to worry about with respect

to performance: how slow the OPEN is, and how many operations have to be done. In the

CAIS, the latter is going to kill you.

About 60-70% of any ALS degradation is done by the Ada language support tools (mostly

in compilation and linking) and the other 30% or so is done by examination of attributes, etc.

But there is a better way of handling the Ada language, e.g., Rational's machine.

Everyone perceived that the cost of using the Ada language would come down in the

future.

It's that programming-in-the-large is now coming into current usage. There will be more

recompilations in the Ada language support systems than in those systems that support most

other languages. That is a penalty of Ada language usage. Compilation speeds will get a

little better, though.

14.2 Perceived Response Time

PC's will permeate and day-to-day keystrokes will be done on PC's. Configuration

management will be taking care of uploading/downloading.

There is a perceived response time. Some tools in the ALS have been modified to spit out

intermediate status results. The edit-compile-bind-execution-edit circle model has the most time

spent in the compile-bind portion; thus the whole circle is slow.

54 CAISWG/C IG/SEI PROCEMINGS

LCDR Philip Myers_ (thinking in maintenance mode). indicated that programmers will be

working on several programs. They can upload/download different programs' portions. Yes,

there will be a management problem concerning the discipline of programmers. Programmers

want to be productive.

If users don't see any response after initiation within about 6 seconds or so, they will

become discouraged. If something takes about 1/2 hour, then they can switch universes. If it

only takes about 5-10 minutes, they won't.

There's a time span that a human will know about regarding productivity. If a wait is

above this number, the person will put the job off to the background. If the wait is

perceived to be below this number, the person will wait for it.

14.3 Prototype CAIS Implementations

Robert Stevenson, manager of the CAIS project at GOULD, said that the perception at

GOULD is that if the CAIS is out and it doesn't meet certain performance requirements, it

will hurt the CAIS effort more than help it.

Jack Kramer said that early implementations should be sold to management as a prototype.

It is a serious concern. But make sure that people understand what it iL Rapid prototyping

efforts are being done here - just make sure that it is understood that it is indeed a rapid

prototyping effort.

We are now moving into programming-in-the-large today. Time delays are a fact of life in

those environments.

Richard Thall, when asked if there would be optimized environments, responded that the

Rational Ada environment is an example of one, and best perhaps as an extreme example.

GOULD indicated that if the CAIS was a standard five years ago, they would have put it

on a bare machine. GOULD also indicated that their challenge is to get a tool to run under

the CAIS only slightly slower than the tool runs under its native environment.

There is an expectation that dedicated hardware that does nothing but support the Ada

language will be available in the future.

PERFORMANCE IN THE CAIS 55

Jack Kramer - said that, with the CAIS .node. model, most existing file .systems are subsets of

the CAIS. If a standard like the CAIS exists, then there will be an evolution of operating

systems going in that direction. A lot of companies will want to sell hardware in order to

get more efficient implementations.

144 Perceived Performance

Richard Thall came back to the problem of perceived performance: why are workstations

attractive? If it's the user's own, it is his, no one else's. Well see stuff on workstations in

the future. So we'll see the CAIS on a workstation, some people say. I don't think so but

some say that there will be CAIS servers on LANs. We need to work on the user interface;

CAIS interfaces will be on local PC's.

The combination of the CAIS on a local PC doing local things and periodically going out to

the big machine to get something will increase productivity and perceived performance.

CLI functions should be on the local machine (no inference made that the CAIS be

distributable). Concerning issues of perceived performance, in order to decide what a local

CAIS exports, it is recognized that certain high speed tasks are done locally. Support is

needed in the CAIS once we recognize that user interfaces are of special concern.

56 CAISWG/CIG/SEI PROCEEDINGS

USER INTERFACES AND GENERAL CAIS INPUT/OUTPUT 57

15.0 User Interfaces and General CAIS Input/Output
If CLI functions should be on the local machine, then support is needed in the CAIS once it

is recognized that user interfaces are of special concern. Interfaces for window/graphical

management should also be defined.

CAIS 2.0 addresses these problems.

An issue before the community now is what is today's CAIS as a stepping stone. There

has been some reluctance about having 1/0 in the CAIS, but everyone said that Ada I/O was

needed because 90% of the tools use 1/O 90% of the time.

I/O is a major tool portability issue. That's why it's in the CAIS today. The current I/O

should be fixed. Additional packages can be added once it is understood what the community

would generally support. What is in the CAIS today is what today's tools can support.

We're experiencing a more rapid evolution than originally expected.

Tool transportability should be tested. In the early part of next year, that can be done

with (at least) the implementations represented here.

58 CAISWG/C IG/SE! PROCEEDINGS

RECOSWUENOAT IONS 59

16.0 Recommendations

Many recommendations came out of this Workshop.

1. A different means of referring to CAIS 2.0 would be appropriate at this time.

2. The CAS does not have a Mandatory Secure Model and there was a perception
that any Mandatory Secure Model can be inserted in the CAS. The question "Can
the CAS be implemented on a bare system and be secure?" must be addressed.

3. Clearer semantics must be included in the CAIS document. The implementors would
like to have interactions or the lack thereof among different interfaces explicitly
stated.

4. There should be something concerning naming in the CAIS about distribution.

5. The requirement for security as stated in the Requirements and Design Criteria
document for the CAIS [8] must be firmed up.

6. The type definitions of the CAIS should be moved to the CAIS package level, i.e,
to the outermost package level.

7. All limited private types should be accessible in any of the CAIS implementations.

8. It would be a good exercise to define the CAIS node attributes and relationships

Susing an external representation.

9. An import/export of the node structure itself would also be a useful exercise.

10. Issues of archiving must be addressed and solutions enumerated.

11. Examples are needed in the CAIS document; these should be generated in the next
version.

12. A table of predefined attributes and operations (procedures) that affect them should
be placed in the CAIS document.

* 13. An explicit statement concerning access control at some of the procedure interfaces
should be included in the CAIS document.

14. The CAlS implementors need to get answers back from the CAIS designers very
rapidly. Some sort of mechanism must be created in order to satisfy this need.

CAISWG/CIG/SEI PROCEEDINGS

LIST OF PARTICIPANTS 61

Appendix A
LIST OF PARICIPANTS

CAIS Working Group (CAISWG) of KIT/KITIA

Herman Fischer
Litton Data Systems
MARK V
16400 Ventura Blvd
Suite 303
Encino, CA 91436
(818) 995-7671
HFISCHER@Ada20

Tim Harrison
Texas Instruments, Inc.
P. 0. Box 801
Mail Stop 8007
2501 W. University
MoKinney, TX 75069
(214) 952-2152
HARRISON%TI-EG.CSNET@CSNET-RELAY

Tim Lindquist
Computer Science Department
Arizona State University
Tempe, AZ 85287
(602) 965-2783
LINDQUIS%ASU.CSNET@CSNET-RELAY

Hans Mumm
Naval Ocean Systems Command
Code 423
San Diego, CA 92152
(619) 225-6682
MUMM@NOSC-TECR or HMUMM@Ada20

LCDR Philip Myers
Ada Joint Program Office
The Pentagon
3D139 (1211 Fern Street)
Washington, DC 20301-3081
(202) 694-0209
MYERS@NRL-CSR

Erhard Ploedereder
Tartan Laboratories
477 Melwood Avenue
Pittsburgh, PA 15213
(412) 621-2210

62 CAISWG/CIG/SEI PROCEED INGS

PLOEDEREDEROTARTAN

Carl Schmiedekamp
Naval Air Development Center
Code 5033
Warminster, PA 18974
(215) 441-1779
SCHMIEDE@NADC

Ray Syzmanski
AFWAL/AAAF
Wright Patterson AFB
Dayton, OH 45433
(513) 255-6730
RSZYMANSKI@Ada2O

Richard Thall
SofTech, Inc.
460 Totten Pond Road
Waltham, MA 02254-9197
(617) 890-6900 ext 313
SOFTKIT@Ada20

CAIS Implementors Group

Gould, Inc.
C. S. D.
6901 West Sunrise Blvd.
Fort Lauderdale, FL 33321
RSTEVENSON@Ada2O

Pete Carr
(305) 587-2900

Mike Doub (Manager, Ada Project Development)
(305) 587-2900 ext 3891

Robert Stevenson (Manager, CAIS Project)
(305) 587-2900 ext 3823

IBM
Federal Systems Division
9500 Godwin Drive
102/075
Manassas, VA 22110

Jeff Vermette

LIST OF PARTICIPAN'S 63

(703) 367-6715
DRAKE@Ada20

* MITRE Corporation
1820 Dolly Madison Blvd.
McLean, VA 22102

Helen Gill
(703) 883-7980
GILL@MITRE

Chuck Howell
(703) 883-6080
HOWELL@MITRE

Robbie Hutchison
(703) 883-7037
HUTCHISO@MITRE

Mike McClimens
* (703) 883-7697

MIKEMC@MITRE

Tana Reagan
(703) 883-6547
REAGAN@MITRE

Software Engineering Institute
* Carnegie-Mellon University

Pittsburgh, PA 15213

Dan Burton
DBURTON@CMU-SEI
(412) 578-7613

Robert Ellison
ELLISON@CMU-SEI
(412) 578-7705

* Peter Feiler
FEILER@CMU-SET
(412) 578-7700

Dan Miller
DHM@CMU-SEI

* (412) 578-7616

64 CAISW/CIG/SEI PROCEEDINGS

William G. Wood
WGW@CMU-SEI
(412) 578-7723

WIS Operating System Task Force

Mike Liu
Department of Computer and Information Science
Ohio Statue University
2036 Neil Avenue Mall
Columbus, OH 43210
(614) 422-1837
LIUOHIO-STATE.CSNET@CSNET-RELAY

John (Jack) Stankovic
Dept. of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213
(412) 578-7678
STANKOVIC@CMU-SEI

Institute for Defense Analyses
Computer & Software Engineering Division
5 Skyline Place
5111 Leesburg Pike, Suite 300
Falls Church, VA 22041

John Chludzinski
(703) 824-5518
JCHLUDZINSKI@Ada2O

Jeff Clouse
(703) 824-5514
JKRAMER@Ada20

Jack Kramer
(703) 824-5504
KRAMER@Ada20

Clyde Roby
(703) 824-5536
CROBY@Ada2O

GOALS 65

Appendix B
GOALS

GOALS
of the

CAISWG/CIG/SEI
Meeting

* 1. Exchange of information between the designers of the CAIS (members of the CAIS
Working Group (CAISWG) of the KIT/KITIA) and those groups (mainly represented
by the CAIS Implementors Groups (CIG) of SIGAda) actually doing prototype or
development of the CAIS resulting in a set of issues that need to be addressed and
possibly acted upon during the evolution of the MIL-STD-CAIS.

2. Introduction of other environment ideas (most notably UNIX and PCTE) to the
CAISWG and CIG for possible inclusion into the CAIS during its evolution.

3. Discussion of the issues.

66 CAISWG/CIG/SEI PROCEED INGS

AGENDA 67

Appendix C
AGENDA

0Tuesday, October 29th

9:00 AM Welcome

Registration ($20)

*General Introduction of Attendees

Statement of Goals

Generation of Working Agenda

DISCUSSION OF ISSUES

Implementation Issues
CAIS and PCTE
CAIS Package Structure
CAIS and Security Issues
WIS Distributed OS
Deferred Topics for Space Station Needs

Wednesday, October 30th

9:00 AM Administrivia

Continuation of DISCUSSION OF ISSUES

Lunch Breaks will occur about 12:00 noon. Dinner Breaks will
occur about 5:00 PM. Mid-morning and Mid-afternoon breaks
will occur approximately 10:30 AM and 3:30 PM respectively.

Evening sessions MAY occur as needed.

68 CAISWG/CIG/SEI PROCEEDINGS

I SSUES 69

Appendix D

This was the list of issues that was generated before the Workshop met; it was distributed

at the Workshop.

D.1 General Issues

1. A thorough discussion is needed of how implementors are going to deal with the
CAIS security requirements on hosts that do not implement multilevel security as
part of the native host architecture.

2. Discussions on the current work elsewhere that may be related to the CAIS. This
may include enhancements to UNIX that either relate to CAIS features or suggest
additional services the CAIS might be extended to provide; Microcomputer Operating
System Interfaces (MOSI), how the CAISWG sees the CAIS impacting The STARS
SEE, the Space Station SEE, SEI showcase environments, etc. Also included here
may be issues concerning how the PCTE could be used as an implementation
vehicle for the CAIS and what features the PCTE has that the CAIS does not that
perhaps should be added to the CAIS.

3. Discussion of the overall design model behind LISTUTILITIES. There must be a
better solution to the problem of returning strings from LISTUTILITIES routines.

4. Discussion of the package structure of the CAIS specifications, including changes to
the I/O packages and suggestions for a new global exception package.

5. Additional iterator facilities should be added.

6. The semantics are not fully defined in many areas. One of the major areas of
concern is in situations where more than one exception could be raised and no
guidance is given on choosing a "proper" one.

7. Clarifications should be made where it is not clear that the issues are well
understood, e.g, related to the semantics for dependent processes, and some interfaces
that appear to be redundant in nature.

D.2 WIS Distributed OS Issues

There was some concern about problems with secondary relationships.

There does not appear to be requirements on the consistency of secondary relationships, so

ensuring consistency will not be a problem, although it might be for users of CAIS. Has

there been any thought given to consistency among secondary and primary relationships? To

give a database example of this, primary relationships might put a set of nodes in a given

70 CAISWG/CIG/SEI PROCEEDINGS

department (or directory) with secondary relationship "REPORT-TO" pointing to the manager

with the manager having a "MANAGES" relationship that is inconsistent with

"REPORTS-TO". Perhaps this would be more convincing with a technical department with

separate managers for administrative and technical matters. This is an issue with their use,

not their implementation.

In implementing secondary relationships, the assumption was made that a secondary

relationship can be stored at the "base node" in the CAIS terminology. Then one issue that

was seen is whether a secondary relationship can reasonably be forgotten when the base node

is deleted. The assumption was made that this is reasonable yet the paragraph just before

5.1.2.22 in the CAIS document says that secondary relationships must remain until they are

explicitly deleted; that is only secondary relationships "to" such a node, as opposed to "from" a

deleted node. Thus, in the implementation envisioned for a diss ibuted system, the storage of

secondary relationships is distributed, with each secondary relationship stored at the storage

location for the base node. The only exception to this that can be seen at this point is a

possible decentralized relationship mechanism using multicast. As the naming design is

developed, it is hoped that there may be some clarification on this point.

D.3 CAIS and the Space Station

The following is quoted from a paper that was presented at the AIAA conference in Long

Beach in October 1985 [10

The complete resolution of at least three areas which
are vital to the context of the Space Station has been
deferred until later revisions of the CAIS. Quoting from the
current draft,

'o. Distributed environments ... currently deferred is
the decision whether or not to provide to the user
explicit CAIS interfaces to control the
distribution of the environment, including
designation of where nodes exist and where
execution takes place. Note that a set of
distributed processors could include one or more
target machines.''

''d. Inter-tool interfaces. The current CAIS does not
define the command processor language syntax,
... or the interaction between the run time system
and debugger tools. Currently deferred are
decisions regarding ... and whether or not to place
constraints on the run time system to provide

ISSUES 71

process-execution information.''

''e. Interoperability. The current CAIS ... does not
* define external representations of data for

transfer between environments or between a host and
a target.''

In the process of evolving later versions to meet the
needs of distributed applications, it will be necessary to

* decompose the process node of the current version to support
a finer grain of program element representation. The process
node in conjunction with a queue node provides a meta level
representation of all program units of an Ada program. Thus
if the program to be executed will spawn three tasks, each to
be executed simultaneously on a different processor which is
remote from the processor responsible for the parent rpocess,
the currently proposed process node (with its associated
queue node) would be the single required CAIS repository of
information on the state of the program, resources being
utilized, etc. It seems obvious that for purposes of

* debugging, performance analysis, dynamic reconfiguration
support and many other features that characterize distributed
applications, a finer grain of representation is needed.

0

72 CAISWG/CIG/SEI PROCEEDINGS

MITRE'S LIST-UTILITIES PACKAGE 73

Appendix E
MiTREs LIST_ ULT Package

Below is a revised specification for the CAIS Package LIST-JT 1TIES. Areas which have

been modified are identified in the listing.

Mike McClimen's comments on the LISTUTILITIES package are:

"My impression has been that the other implementors have found the LIST_UTILTIES

interface as cumbersome as we have. In Pittsburgh it seemed that the CAISWG shared that

feeling (or at least its possibility) and that the expanded token approach was favorably

received. The complete update of Section 5.4 will take considerable work. I am willing to

work towards that update but would like to coordinate closely with those making the

decision on any changes to the CAIS."

"In Pittsburgh, two statements were made which were not part of my understanding when

I wrote the new specification. They result in a better interface and have only minor impact

on the revised specification. They are:"

* the external representation of string.items require quotes only when they appear
as part of a list. As individual items they are unquoted.

S float and integer items are intended to be stored internally so that they may be
retrieved under any generic representation (float or integer, respectively) and
constraint errors are raised only when the value of the item violates constraints of
the type.

"I would like to hear people's opinions on the proposed subprogram names and on the

proposal to eliminate the string interface for Named parameters, requiring a TO-TOKEN

function call."

MITRE's proposed LISTUTILITIES follows

74 CAISWG/CIG/SEI PROCEEDINGS

-- This package specification is a strawman proposal for the
-- redefinition of List Utilities based upon an expanded
-- Token-Type. The new TokenType is able to represent
-- integers, floats, identifiers, strings, and lists. In this
-- strawman, changes required to expand Token-Type are indicated
-- by comments.

-- In summary, the proposed interface changes are:

-- 1. Sections 5.4.1.1 thru 5.4.1.7
unchanged list operations

-- 2. Sections 5.4.1.8 and 5.4.1.13
delete and use token operations

-- 3. Sections 5.4.1.9 thru 5.4.1.15
unchanged list operations

-- 4. Sections 5.4.1.16 thru 5.4.1.19
change to operate on tokens instead
of listitems. Add Token function
to specify any listitem as a Token

-- 5. Sections 5.4.1.20
supply To-Token and Value for all item

kinds
supply Token function
supply TextLength and Copy for

TokenTypes
delete the Insert, Replace, Extract, and

PositionByValue subprograms
since these are now supplied in
16-19 for all item kinds

-- 6. Sections 5.4.1.21 thru 5.4.1.23
delete and use token operations

-- Changes to our data structures to implement an expanded
-- token are shown for reference only.

-- Additional changes(recommended):

-- The interface would be simplified if the subprograms with
-- the parameter Named of type Namestring were eliminated.
-- This would require:
-- Extraot(List,Token("TheName"),ListToken);
-- instead of:
-- Extract(List,"TheName",ListToken);

-- Function names have been shortened as follows:
-- Token for ToToken
-- Value for ToValue
-- Text for ToText
-- Element for new function to treat a list

element as a token

MITRE'S LIST-UTILITIES PACKAGE 75

package ListUtilities is

-- The following type and exception declarations are from
-- CAIS 5.4.1.1

type List-Type is limited private;

type Token-Type is limited private; --**EXPANDED

subtype Namestring is string;

type ListKind is (Unnamed, Named, Empty);
-- See note above re "empty"

type Item_Kind is (ListItem, String-Item, Integer-Item,
FloatItem, Identifier-Item);

0 subtype ListText is String;
type Count is range 0 .. Integer'Last;
subtype PositionCount is Count range

Count'first+1 .. Count'last;

0 SearchError : exception; --**SHOULD BE DELETED

EMPTYLIST : constant List-Type;

-- MILSTD CAIS 5.4.1.2
procedure Copy (To-List : out ListType;

FromList : in ListType);

-- MILSTD CAIS 5.4.1.3
procedure ToList (ListLiteral : in List-Text;

List : out List-Type);

-- MILSTD CAIS 5.4.1.4
function Text (List : in List-Type) return List-Text;

-- MILSTD CAIS 5.4.1.5
function IsEqual(Listl : in List-Type;

List2 : in List-Type)
return Boolean;

-- MILSTD CAIS 5.4.1.6
procedure Delete (List in out ListType;

76 CAISWG/CIG/SEI PROCEEDINGS

Position : in Position-Count);

procedure Delete (List : in out List-Type;
Named : in Namestring);

procedure Delete (List : in out List-Type;
Named : in Token-Type);

-- MILSTD CAIS 5.4.1.7
function GetListKind (List : in List-Type)

return List-Kind;

__*

-- MILSTD CAIS 5.4.1.8 --**COULD BE DELETED

function GetItemKind (List in List-Type;

Position : in PositionCount)
return ItemKind;

function GetItemKind (List : in List-Type;
Named : in Namestring) return ItemKind;

function GetItemKind (List : in List-Type;
Named in Token-Type) return ItemKind;

-- MILSTD CAIS 5.4.1.9
procedure Splice(List :in out List-Type;

Position :in Position-Count;
SubList :in List-Text);

procedure Splice(List :in out ListType;
Position :in Position-Count;
Sub-List :in List-Type);

-- MILSTD CAIS 5.4.1.10
procedure Merge (Front : in List-Type;

Back : in List-Type;
Result : in out List-Type);

-- MILSTD CAIS 5.4.1.11
function SetExtract(List : in List-type;

Position : in Position-Count;
Length : in Positive :- Positive'Last)
return List-Text;

-- MILSTD CAIS 5.4.1.12
function Length (List : in ListType) return Count;

MITRE'S LIST-UTILITIES PACKAGE 77

-- MIL_STD CAIS 5.4.1.13
function Text-Length (List : in List-Type)

return Positive;--Mod to MIL_STD

--**NO LONGER NECESSARY

function Text-Length (List in List-Type;
Position in PositionCount)
return Positive;

function Text-Length (List in ListType;
Named in Namestring)
return Positive;

function Text-Length (List in List-Type;
Named in Token-Type)
return Positive;

-- MIL_STD CAIS 5.4.1.14
procedure Item_Name (List in List-Type;

Position in PositionCount;
Named out Token-Type);

-- MIL_STD CAIS 5.4.1.15
Function PositionByName(List in List-Type;

Named : in Namestring)
return Position_Count;

Funcrtion PositionByName(List : in List-Type;
Named : in Token-Type)
return PositionCount;

-- MIL_STD CAIS 5.4.1.16
procedure Extract (List : in ListType;

Position : in Position-Count;
ListItem : out TokenType);

--**TokenType

procedure Extract (List : in ListType;
Named : in Namestring;
ListItem : out Token-Type);

-- 2*TokenType

procedure Extract (List : in ListType;
Named : in Token-Type;
List-Item : out Token-Type);

-- *TokenType

-- '" Element function added to identify token in

78 CAISWG/CIG/SEI PROCEEINGS

-- '* a list. This allows removal of list operations
function Element (List in ListType;

Position in PositionCount)
return TokenType; --**TokenType

function Element (List in ListType;
Named in Namestring)
return Token-Type; --**TokenType

function Element (List in ListType;
Named in TokenType)
return Token-Type; --**TokenType

-- MIL_STD CAIS 5.4.1.17
procedure Replace (ListItem : in out List-Type;

List : in Token-Type;
-- **TokenType

Position in Position_Count);

procedure Replace (ListItem in out List-Type;
List in Token-Type;

-- **TokenType
Named in Namestring);

procedure Replace (ListItem : in out List-Type;
List : in Token-Type;

-- **TokenType
Named : in Token-Type);

-- MIL_STD CAIS 5.4.1.18
procedure Insert (List : in out List-Type;

ListItem : in Token-Type;
--**TokenType

Position : in Count);

procedure Insert (List : in out List-Type;
List-Item : in Token-Type;

-- **TokenType

Named : in Namestring;
Position : in Count);

procedure Insert (List : in out List-Type;
ListItem : in Token-Type;

--**TokenType
Named : in Token-Type;
Position : in Count);

--MIL_STD CAIS 5.4.1.19
function PositionByValue

(List : in ListType;
Value : in TokenType;

MITRE'S LIST-UTILITIES PACKAGE 79

--**TokenType

StartPosition :in PositionCount
:- PositionCount'First;

EndPosition :in PositionCount
:- PositionCount'last)

return PositionCount;

--MILSTD CAIS 5.4.1.20
package IdentifierItems is

-- MIL STD CAIS 5.4.1.23.1
..-. ** oenType

function Token(Identifier :in Namestring;
String :in boolean)
return TokenType; -*Tk nTp

function Token(List :in List-Type)
return Token-Type;

-- **Token-Type

generic
type Integer-NYumber is range

function Integer-Token(ListItem in Integer-Number)
return Token-Type;

-*Token-Type
generic

type Float-Number is digits <>;
function FloatToken(ListlItem :in FloatNumber)

return Token-Type;

-- * *Token-Type
procedure ToToken(Identifier :in Namestring;

Token :in out Token-Type;
IsString :in boolean);

-*Token-Type
procedure ToToken(List :in List-Type;

Token :in out TokenType);
..- **ToenType

generic
type Integer-Number is range ;

procedure Integer-To-Token
(List-..Item :in Integer-Number;
Token :in out Token-..Type);

-*Token-Type
generic

type FloatNumber is digits
procedure FloatToToken

(List-Item :in FloatNumber;
Token :in out Token-Type);

86 CAISWG/CIG/SEI PROCEEDINGS

-- MIL_STD CAIS 5.4.1.20.2
function Text(ListItem : in Token-Type)

return Namestring;
__**

-- **ADDED
__**

function TextLength(ListItem : in Token-Type)
return Positive;

-- MILSTD CAIS 5.4.1.20.3
function IsEqual(Tokenl : in Token-Type;

Token2 : in TokenType)
return boolean;

-- **ADDED

procedure Copy(Tokeni : in out Token-Type;
Token2 : in Token-Type);

-- MIL STD CAIS 5.4.1.20.4
function Value(ListItem : in TokenType)

--**TokenType for

--strings, identifiers
return Namestring;

generic
type Integer-Number is range <>;

function IntegerValue(ListItem : in Token-Type)
return Integer-Number;

--integers

generic
type FloatNumber is range ,,;

function FloatValue(ListItem : in Token-Type)
return FloatNumber;

--floats

function Value(ListItem : in Token-Type)
return List-Type;

--lists

--MILSTD CAIS 5.4.1.20.4 through 7 deleted

end IdentifierItems;

--MILSTD CAIS 5.4.1.21 deleted
--MIL_STD CAIS 5.4.1.22 deleted
--MILSTD CAIS 5.4.1.23 deleted

MITRE'S LIST-UTILITIES PACKAGE 81

private

type ItemDescriptor;
type List-Type is access ItemDescriptor;

type StringOfAnyLength(
Size : positive) is

record
Kind : Item-Kind;

--***moved from ItemDescriptor***
List : ListType;

--***moved from ItemDescriptor***
Value : string(1..Size);

end record;
type TokenType is access StringOfAnyLength;

type ItemDescriptor is
record
--Kind : ItemKind; ***moved to TokenType***
Name : Token-Type;
Element : TokenType;

--List : List-Type; ***moved to TokenType***
NextItem: List-Type;

end record;

EMPTYLIST constant List-Type :- null;

end List-Utilities; -- END OF PACKAGE SPEC

-- -

82 CAISWG/CIG/SEI PROCEEDINGS

References

[1] Reference Manual for the Ada Programming Language (MIL-STD-1815A)
American National Standards Institute, 1983.

[2] Military Standard Common APSE Interface Set (CATS), proposed MIL-STD-CAIS
KAPSE Interface Team and KAPSE Interface Team from Industry and Academia CAIS

Working Group, 1985.

[3] Lindquist, Tim.
CAIS Operational Definition.
Technical Report, Arizona State University, 1985.

[41 CATS Rationale (DRAFT)
1986.

[5 Gould, Inc.
(Untitled).
1986.

(6] Rebecca Bowerman.
Study of the Common APSE Interface Set (CATS).
Technical Report 85W00537, The MITRE Corporation, 1820 Dolly Madison Boulevard,

McLean, VA 22102, 1985.

[7] Oberndorf, Patricia A. (Chairman).
Kernel Ada Programming Support Environment (KAPSE) Interface Team: Public

Report, Volume I.
Technical Report, Naval Ocean Systems Center, 1982.
Technical Document 509.

[8] KIT/KrmA.
DoD Requirements and Design Criteria for the Common APSE Interface Set (CATS).
Technical Report, Ada Joint Program Office, 1985.
Prepared and Approved by the KAPSE Interface Team (KIT) and the KIT-Industry-

Acedemia (KITIA) for the Ada Joint Program Office.

[9] CAIS Reader's Guide (DRAFT)
1985.

[10] Charles W. McKay and Rodney L Bown.
Ada Run Time Support Environments and a Common APSE Interface Set.
In AIAA/ACM/NASA/IEEE Computers in Aerospace V Conference, pages 233-237.

October, 1985.

[11] Buxton, John N.
Requirements for Ada Programming Support Environments (Stoneman)
Washington, D.C, 1980.

[12] Trusted Computer System Evaluation Criteria, CSC-STD-OO1-83
National Computer Security Center, 1983.

MITRE'S LIST-UTILITIES PACKAGE 83

[13] B. Jackson and . Salasin.
Pre nary Requirements for the Army WWMCCS Information System (AWLS).
Technical Report WP-84W00035, Mitre Corporation, 1984.
Working Paper.

84 CAISWG/CIG/SEI PROCEEDINGS

Distribution List for IDA Paper P-1925

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

LCDR Ronald Owens 5
*• Ada Joint Program Office

1211 Fern Street, C-107
Arlington, VA 22202

Other

Defense Technical Information Center 2
* Cameron Station

Alexandria, VA 22314

IT Research Institute 1
4550 Forbes Blvd., Suite 300
Lanham, MD 20706

* (AJPO documents only)

Others

Mr. Herman Fischer 1
Litton Data Systems

0 MARKV
16400 Ventura Blvd.
Suite 303
Encino, CA 91436

Mr. Tim Harrison I
* Software Productivity Consortium

SPC Building
2214 Rock Hill Road
Herndon, VA 22070

Mr. Tim Lindquist
* Computer Science Department

Arizona-State University
Tempe, AZ 85287

Mr. Hans Mumm
Naval Ocean Systems Command

* Code 423
San Diego, CA 92152

Distribution List-1

NAME AND ADDRESS NUMBER OF COPIES

Mr. Erhard Ploedereder
Tartan Laboratories
477 Melwood Avenue
Pittsburgh, PA 15213

Mr Carl Schmiedekamp
Naval Air Development Center
Code 5033
Warminster, PA 18974

Mr. Ray Syzmanski
AFWAL/AAAF
Wright Patterson AFB
Dayton, OH 45433

Mr. Richard Thall
Soffech, Inc.
460 Totten Pond Road
Waltham, MA 022549197

Mr. Pete Carr
Gould, Inc.
C.S.D.
6901 West Sunrise Blvd.
Fort Lauderdale, FL 33321

Mr. Mike Doub
Manager, Ada Project Development
Gould, Inc.
6901 West Sunrise Blvd.
Fort Lauderdale, FL 33321

Mr. Robert Stevenson
Manager, CAIS Project
Gould Inc.
C.S.D.
6901 West Sunrise Blvd.
Fort Lauderdale, FL 33321

Mr. Jeff Vermette
IBM (182/3J80)
18100 Frederick Pike
Gaithersburg, MD 20879

Distribution List-2

NAME AND ADDRESS NUMBER OF COPIES

Mr. Harvey Burkett 1
IBM (182/3J80)
18100 Frederick Pike
Gaithersburg, MD 20879

0 Ms. Helen Gill
MITRE Corporation
7525 Colshire Drive
McLean, VA 22102

Mr. Chuck Howell
MITRE Corporation
7525 Colshire Drive
McLean, VA 22102

Ms. Robbie Hutchinson 1
MITRE Corporation

0 7525 Colshire Drive
McLean, VA 22102

Mr. Mike McClimens 1
MITRE Corporation
7525 Colshire Drive

* McLean, VA 22102

Ms. Tana Reagan 1
M1TRE Corporation
7525 Colshire Drive
McLean, VA 22102

Mr. Dan Burton
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

* Mr. Robert Ellison
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Mr. Peter Feiler
* Software Engineering Institute

Carnegie-Mellon University
Pittsburgh, PA 15213

Distribution List-3

NAME AND ADDRESS NUMBER OF COPIES

Mr. Dan Miller 1
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Mr. William G. Wood
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Mr. Mike Liu
Department of Computer and
Information Science
Ohio State University
2036 Neil Avenue Mall
Columbus, OH 43210

Mr. John Stankovic
Dept. of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

CSED Review Panel

Dr. Dan Alpert, Director
Program in Science, Technology & Society
University of Illinois
Room 201
912-1/2 West Illinois Street
Urbana, Illinois 61801

Dr. Barry W. Boehm
TRW
Defense Systems Group
MS R2-1094
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Distribution List-4

* NAME AND ADDRESS NUMBER OF COPIES

Dr. C.E. Hutchinson, Dean 1
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.

* Bethesda, MD 20817

Mr. Robert K. Lehto 1
Mainstay
302 Mill St.
Occoquan, VA 22125

Dr. John M. Palms, Vice President
Academic Affairs & Professor of Physics
Emory University
Atlanta, GA 30322

Mr. Oliver Selfridge 1
45 Percy Road
Lexington, MA 02173

Mr. Keith Uncapher 1
University of Southern California
Olin Hall
330A University Park
Los Angeles, CA 90089-1454

IDA

General W.Y. Smith, HQ 1
Mr. Philip Major, HQ 1
Dr. Robert E. Roberts, HQ 1
Dr. John F. Kramer, CSED 1
Dr. Robert I. Winner, CSED 1
Ms. Anne Douville, CSED 1
Mr. Terry Mayfield, CSED 1
Mr. Clyde Roby, CSED 5
Ms. Sylvia Reynolds, CSED 2
IDA Control & Distribution Vault 3.

Distribution List-5

